Issacwong commited on
Commit
f7381e9
·
1 Parent(s): d6091de

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.37 +/- 0.85
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:817938269b6fcf884ebd306e7ba29a12a1debee91c1f807877b47717df7bc40e
3
+ size 108046
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f39ff8769d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f39ff8794c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1681467120583282341,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAavPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhvKXP2xK0T1+qBE+337Xv2jeZz+Sgv087QjZPrfYnT6urzk/zLfmPP6bg78Q6fO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5buUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]]",
38
+ "desired_goal": "[[ 1.1870887 0.10219273 0.14224431]\n [-1.6835593 0.9057374 0.03094605]\n [ 0.42389622 0.30829403 0.7253369 ]\n [ 0.02816381 -1.028198 -0.4763875 ]]",
39
+ "observation": "[[ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3nxDPbvl7r0xTH0904ndvZKwSj3ekmU+vA6nPZ4ba7st2KU9AcaqPWXyN70mCIw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.0477265 -0.11664911 0.06184024]\n [-0.10817304 0.0494848 0.22419307]\n [ 0.08157107 -0.00358746 0.08097873]\n [ 0.08338547 -0.0449089 0.06837492]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs0KR7ufU/7+UhpRSlIwBbJRLMowBdJRHQKegkQYDT0B1fZQoaAZoCWgPQwgoEHaKVUMJwJSGlFKUaBVLMmgWR0CnoFXcQAdXdX2UKGgGaAloD0MINiGtMejkAsCUhpRSlGgVSzJoFkdAp6AaxxDLKXV9lChoBmgJaA9DCGBWKNL9PAbAlIaUUpRoFUsyaBZHQKef3uE25x11fZQoaAZoCWgPQwg4L058teP7v5SGlFKUaBVLMmgWR0CnokSZrpJPdX2UKGgGaAloD0MIG/Z7Yp2q8r+UhpRSlGgVSzJoFkdAp6II/7iyZHV9lChoBmgJaA9DCB+94T5y6/W/lIaUUpRoFUsyaBZHQKehzcCYCyR1fZQoaAZoCWgPQwg8nwH1ZlT0v5SGlFKUaBVLMmgWR0CnoZHGCI1tdX2UKGgGaAloD0MItqD3xhAA97+UhpRSlGgVSzJoFkdAp6QXtIClrXV9lChoBmgJaA9DCNiarbzkP/i/lIaUUpRoFUsyaBZHQKej3C+De0p1fZQoaAZoCWgPQwjHRiBe12/yv5SGlFKUaBVLMmgWR0Cno6ECvHLidX2UKGgGaAloD0MInx9GCI92CcCUhpRSlGgVSzJoFkdAp6NllRP423V9lChoBmgJaA9DCIAomDEFK/W/lIaUUpRoFUsyaBZHQKel9SDRMOB1fZQoaAZoCWgPQwgsmzkktdALwJSGlFKUaBVLMmgWR0CnpbnLaEi/dX2UKGgGaAloD0MIUI9tGXC2BcCUhpRSlGgVSzJoFkdAp6V+56MR6HV9lChoBmgJaA9DCGjO+pRjcvK/lIaUUpRoFUsyaBZHQKelQ11GLDR1fZQoaAZoCWgPQwhvRzgteNH9v5SGlFKUaBVLMmgWR0Cnp9Ef1YhddX2UKGgGaAloD0MIGLX7VYBv9r+UhpRSlGgVSzJoFkdAp6eVqesgdXV9lChoBmgJaA9DCNe+gF64cwTAlIaUUpRoFUsyaBZHQKenWrbQC0Z1fZQoaAZoCWgPQwgS+wRQjOzzv5SGlFKUaBVLMmgWR0Cnpx8Empl0dX2UKGgGaAloD0MI2BGHbCAdBcCUhpRSlGgVSzJoFkdAp6j47aIvanV9lChoBmgJaA9DCGMOgo5W1QnAlIaUUpRoFUsyaBZHQKeovKeTV2B1fZQoaAZoCWgPQwhinwCKkUUIwJSGlFKUaBVLMmgWR0CnqICKJl8PdX2UKGgGaAloD0MIbt3NUx1y8L+UhpRSlGgVSzJoFkdAp6hESRKYiXV9lChoBmgJaA9DCJhNgGH58/O/lIaUUpRoFUsyaBZHQKeqCIv8IiV1fZQoaAZoCWgPQwirP8IwYMkGwJSGlFKUaBVLMmgWR0CnqcxL0z0pdX2UKGgGaAloD0MIU8+CUN7H97+UhpRSlGgVSzJoFkdAp6mQQe3hGnV9lChoBmgJaA9DCLVv7q8e9/m/lIaUUpRoFUsyaBZHQKepU9alk6N1fZQoaAZoCWgPQwihTQ6fdGLzv5SGlFKUaBVLMmgWR0CnqxzbvgFYdX2UKGgGaAloD0MIjj17LlPT/L+UhpRSlGgVSzJoFkdAp6rgrhBJI3V9lChoBmgJaA9DCBIvT+eKsgfAlIaUUpRoFUsyaBZHQKeqpNEgGKR1fZQoaAZoCWgPQwgjgnFw6VgGwJSGlFKUaBVLMmgWR0Cnqmh8x9G7dX2UKGgGaAloD0MIx2MGKuMf+b+UhpRSlGgVSzJoFkdAp6wz/VAiV3V9lChoBmgJaA9DCIHptG6DGvC/lIaUUpRoFUsyaBZHQKer9/hl18t1fZQoaAZoCWgPQwiIhVrTvOP+v5SGlFKUaBVLMmgWR0Cnq7w7T2FndX2UKGgGaAloD0MIgEqVKHuL87+UhpRSlGgVSzJoFkdAp6t/5i3G43V9lChoBmgJaA9DCGcLCK2HjwDAlIaUUpRoFUsyaBZHQKetR1nuiN91fZQoaAZoCWgPQwidY0D2enfjv5SGlFKUaBVLMmgWR0CnrQsabWmQdX2UKGgGaAloD0MI7iO3Jt22AMCUhpRSlGgVSzJoFkdAp6zPS+g133V9lChoBmgJaA9DCBmveVVnNeW/lIaUUpRoFUsyaBZHQKesk8UVSGd1fZQoaAZoCWgPQwiKj0/Izpv0v5SGlFKUaBVLMmgWR0CnrlqkEcKgdX2UKGgGaAloD0MIpWYPtALDA8CUhpRSlGgVSzJoFkdAp64ehufmLnV9lChoBmgJaA9DCFWFBmLZrAnAlIaUUpRoFUsyaBZHQKet4rsjVx11fZQoaAZoCWgPQwgvibMiakIBwJSGlFKUaBVLMmgWR0CnraZ2IO6NdX2UKGgGaAloD0MISWk2j8NADMCUhpRSlGgVSzJoFkdAp69wv6CUYHV9lChoBmgJaA9DCIi4OZUMgP6/lIaUUpRoFUsyaBZHQKevNMINVip1fZQoaAZoCWgPQwhSnKOOjisHwJSGlFKUaBVLMmgWR0CnrvkaESM+dX2UKGgGaAloD0MIdsb3xaUq6r+UhpRSlGgVSzJoFkdAp6686gdwN3V9lChoBmgJaA9DCOf+6nHfKv2/lIaUUpRoFUsyaBZHQKewkMDwH7h1fZQoaAZoCWgPQwinlNdK6G7zv5SGlFKUaBVLMmgWR0CnsFSHEdeZdX2UKGgGaAloD0MIJEVkWMV7BcCUhpRSlGgVSzJoFkdAp7AYsNDtxHV9lChoBmgJaA9DCDs42JsYku6/lIaUUpRoFUsyaBZHQKev3Eehf0F1fZQoaAZoCWgPQwjrAIi7enUAwJSGlFKUaBVLMmgWR0CnsaGCyyD7dX2UKGgGaAloD0MIs5WX/E+++r+UhpRSlGgVSzJoFkdAp7FlV3ljmXV9lChoBmgJaA9DCJq0qbpH9g7AlIaUUpRoFUsyaBZHQKexKXdCVr11fZQoaAZoCWgPQwhcjexKy0j6v5SGlFKUaBVLMmgWR0CnsO0b961LdX2UKGgGaAloD0MIUdobfGFy/7+UhpRSlGgVSzJoFkdAp7K02YOUdXV9lChoBmgJaA9DCP5/nDBhlADAlIaUUpRoFUsyaBZHQKeyeJUHY6J1fZQoaAZoCWgPQwikwthCkEMCwJSGlFKUaBVLMmgWR0CnsjzBInSfdX2UKGgGaAloD0MIQrRWtDlO9L+UhpRSlGgVSzJoFkdAp7IAU+LWJHV9lChoBmgJaA9DCE1LrIxGvu+/lIaUUpRoFUsyaBZHQKezzCOWBz51fZQoaAZoCWgPQwj5ugz/6WYIwJSGlFKUaBVLMmgWR0Cns4/bsWwedX2UKGgGaAloD0MI4WJFDaYh97+UhpRSlGgVSzJoFkdAp7NUBwMpgHV9lChoBmgJaA9DCBTRr62fXgfAlIaUUpRoFUsyaBZHQKezF8qnWJ91fZQoaAZoCWgPQwibkqzD0ZUMwJSGlFKUaBVLMmgWR0CntNbZ39rHdX2UKGgGaAloD0MI3c1THXJzA8CUhpRSlGgVSzJoFkdAp7SalpGnXXV9lChoBmgJaA9DCJs90AoMmfa/lIaUUpRoFUsyaBZHQKe0XqoIfKZ1fZQoaAZoCWgPQwgqqn6l8wEAwJSGlFKUaBVLMmgWR0CntCIrOJLvdX2UKGgGaAloD0MIhV/q503lB8CUhpRSlGgVSzJoFkdAp7Xr2exwAHV9lChoBmgJaA9DCCbl7nN8NADAlIaUUpRoFUsyaBZHQKe1r6WPcSJ1fZQoaAZoCWgPQwhUjzS4re39v5SGlFKUaBVLMmgWR0CntXPTgEU1dX2UKGgGaAloD0MIE7h1N0818L+UhpRSlGgVSzJoFkdAp7U3eSB9TnV9lChoBmgJaA9DCD6WPnRBffS/lIaUUpRoFUsyaBZHQKe3ACK77Kt1fZQoaAZoCWgPQwjuCn2wjE0AwJSGlFKUaBVLMmgWR0CntsQSrYGudX2UKGgGaAloD0MIhIB8CRVcAsCUhpRSlGgVSzJoFkdAp7aIMDwH7nV9lChoBmgJaA9DCF2Kq8q+a/G/lIaUUpRoFUsyaBZHQKe2S89wFTx1fZQoaAZoCWgPQwgxzt+EQqQMwJSGlFKUaBVLMmgWR0CnuBjBVMmGdX2UKGgGaAloD0MIZof4hy29/7+UhpRSlGgVSzJoFkdAp7fcfs/puHV9lChoBmgJaA9DCN2271F/PQbAlIaUUpRoFUsyaBZHQKe3oJJGvwF1fZQoaAZoCWgPQwitFthjImX3v5SGlFKUaBVLMmgWR0Cnt2QtSQ5ndX2UKGgGaAloD0MI93ZLcsAu+r+UhpRSlGgVSzJoFkdAp7kuv8qFy3V9lChoBmgJaA9DCPH1tS41Qv2/lIaUUpRoFUsyaBZHQKe48pH7P6d1fZQoaAZoCWgPQwiZR/5g4FkAwJSGlFKUaBVLMmgWR0CnuLbJGOMmdX2UKGgGaAloD0MIyOwseqeiDMCUhpRSlGgVSzJoFkdAp7h6d8RcvHV9lChoBmgJaA9DCINuL2mMFgHAlIaUUpRoFUsyaBZHQKe6R+jM3ZR1fZQoaAZoCWgPQwhENLqD2Nn5v5SGlFKUaBVLMmgWR0Cnugu0b961dX2UKGgGaAloD0MIwMsMG2VdAcCUhpRSlGgVSzJoFkdAp7nPvWpZOnV9lChoBmgJaA9DCLHc0mpI/ArAlIaUUpRoFUsyaBZHQKe5k3z+WGB1fZQoaAZoCWgPQwgTQ3Iycev7v5SGlFKUaBVLMmgWR0Cnu11fNRm9dX2UKGgGaAloD0MIUrmJWprbBsCUhpRSlGgVSzJoFkdAp7shJf6XSnV9lChoBmgJaA9DCDgUPlsHhwLAlIaUUpRoFUsyaBZHQKe65VPva111fZQoaAZoCWgPQwh6GcVyS6sFwJSGlFKUaBVLMmgWR0CnuqjneSB9dX2UKGgGaAloD0MIGJXUCWii7r+UhpRSlGgVSzJoFkdAp7zMfigkC3V9lChoBmgJaA9DCK+ytike1/+/lIaUUpRoFUsyaBZHQKe8kQiiZfF1fZQoaAZoCWgPQwgVU+knnH0AwJSGlFKUaBVLMmgWR0CnvFYUeuFIdX2UKGgGaAloD0MIQKa1aWzPAMCUhpRSlGgVSzJoFkdAp7wacPOIInV9lChoBmgJaA9DCLSULCehFAfAlIaUUpRoFUsyaBZHQKe+kxptaZB1fZQoaAZoCWgPQwjaGhGMgysAwJSGlFKUaBVLMmgWR0CnvlesHSncdX2UKGgGaAloD0MIoE/kSdIVBcCUhpRSlGgVSzJoFkdAp74cgfU4JnV9lChoBmgJaA9DCPqzHykiowjAlIaUUpRoFUsyaBZHQKe94P91loV1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:036fdacdf8bd1c58b3f194ed538accf12d4994905dff49ee97ccc1c248db1d7d
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9c4c20e597a587bd32a642eb55b3412b28c5c3a29a0b79069c44c58ceb7082d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f39ff8769d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f39ff8794c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681467120583282341, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAavPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+avPMPsgd5Tzz8fY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhvKXP2xK0T1+qBE+337Xv2jeZz+Sgv087QjZPrfYnT6urzk/zLfmPP6bg78Q6fO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5btq88w+yB3lPPPx9j6Aiow73DerOr/r5buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]\n [0.4002946 0.0279683 0.48231468]]", "desired_goal": "[[ 1.1870887 0.10219273 0.14224431]\n [-1.6835593 0.9057374 0.03094605]\n [ 0.42389622 0.30829403 0.7253369 ]\n [ 0.02816381 -1.028198 -0.4763875 ]]", "observation": "[[ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]\n [ 0.4002946 0.0279683 0.48231468 0.00428897 0.00130629 -0.00701663]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3nxDPbvl7r0xTH0904ndvZKwSj3ekmU+vA6nPZ4ba7st2KU9AcaqPWXyN70mCIw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0477265 -0.11664911 0.06184024]\n [-0.10817304 0.0494848 0.22419307]\n [ 0.08157107 -0.00358746 0.08097873]\n [ 0.08338547 -0.0449089 0.06837492]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs0KR7ufU/7+UhpRSlIwBbJRLMowBdJRHQKegkQYDT0B1fZQoaAZoCWgPQwgoEHaKVUMJwJSGlFKUaBVLMmgWR0CnoFXcQAdXdX2UKGgGaAloD0MINiGtMejkAsCUhpRSlGgVSzJoFkdAp6AaxxDLKXV9lChoBmgJaA9DCGBWKNL9PAbAlIaUUpRoFUsyaBZHQKef3uE25x11fZQoaAZoCWgPQwg4L058teP7v5SGlFKUaBVLMmgWR0CnokSZrpJPdX2UKGgGaAloD0MIG/Z7Yp2q8r+UhpRSlGgVSzJoFkdAp6II/7iyZHV9lChoBmgJaA9DCB+94T5y6/W/lIaUUpRoFUsyaBZHQKehzcCYCyR1fZQoaAZoCWgPQwg8nwH1ZlT0v5SGlFKUaBVLMmgWR0CnoZHGCI1tdX2UKGgGaAloD0MItqD3xhAA97+UhpRSlGgVSzJoFkdAp6QXtIClrXV9lChoBmgJaA9DCNiarbzkP/i/lIaUUpRoFUsyaBZHQKej3C+De0p1fZQoaAZoCWgPQwjHRiBe12/yv5SGlFKUaBVLMmgWR0Cno6ECvHLidX2UKGgGaAloD0MInx9GCI92CcCUhpRSlGgVSzJoFkdAp6NllRP423V9lChoBmgJaA9DCIAomDEFK/W/lIaUUpRoFUsyaBZHQKel9SDRMOB1fZQoaAZoCWgPQwgsmzkktdALwJSGlFKUaBVLMmgWR0CnpbnLaEi/dX2UKGgGaAloD0MIUI9tGXC2BcCUhpRSlGgVSzJoFkdAp6V+56MR6HV9lChoBmgJaA9DCGjO+pRjcvK/lIaUUpRoFUsyaBZHQKelQ11GLDR1fZQoaAZoCWgPQwhvRzgteNH9v5SGlFKUaBVLMmgWR0Cnp9Ef1YhddX2UKGgGaAloD0MIGLX7VYBv9r+UhpRSlGgVSzJoFkdAp6eVqesgdXV9lChoBmgJaA9DCNe+gF64cwTAlIaUUpRoFUsyaBZHQKenWrbQC0Z1fZQoaAZoCWgPQwgS+wRQjOzzv5SGlFKUaBVLMmgWR0Cnpx8Empl0dX2UKGgGaAloD0MI2BGHbCAdBcCUhpRSlGgVSzJoFkdAp6j47aIvanV9lChoBmgJaA9DCGMOgo5W1QnAlIaUUpRoFUsyaBZHQKeovKeTV2B1fZQoaAZoCWgPQwhinwCKkUUIwJSGlFKUaBVLMmgWR0CnqICKJl8PdX2UKGgGaAloD0MIbt3NUx1y8L+UhpRSlGgVSzJoFkdAp6hESRKYiXV9lChoBmgJaA9DCJhNgGH58/O/lIaUUpRoFUsyaBZHQKeqCIv8IiV1fZQoaAZoCWgPQwirP8IwYMkGwJSGlFKUaBVLMmgWR0CnqcxL0z0pdX2UKGgGaAloD0MIU8+CUN7H97+UhpRSlGgVSzJoFkdAp6mQQe3hGnV9lChoBmgJaA9DCLVv7q8e9/m/lIaUUpRoFUsyaBZHQKepU9alk6N1fZQoaAZoCWgPQwihTQ6fdGLzv5SGlFKUaBVLMmgWR0CnqxzbvgFYdX2UKGgGaAloD0MIjj17LlPT/L+UhpRSlGgVSzJoFkdAp6rgrhBJI3V9lChoBmgJaA9DCBIvT+eKsgfAlIaUUpRoFUsyaBZHQKeqpNEgGKR1fZQoaAZoCWgPQwgjgnFw6VgGwJSGlFKUaBVLMmgWR0Cnqmh8x9G7dX2UKGgGaAloD0MIx2MGKuMf+b+UhpRSlGgVSzJoFkdAp6wz/VAiV3V9lChoBmgJaA9DCIHptG6DGvC/lIaUUpRoFUsyaBZHQKer9/hl18t1fZQoaAZoCWgPQwiIhVrTvOP+v5SGlFKUaBVLMmgWR0Cnq7w7T2FndX2UKGgGaAloD0MIgEqVKHuL87+UhpRSlGgVSzJoFkdAp6t/5i3G43V9lChoBmgJaA9DCGcLCK2HjwDAlIaUUpRoFUsyaBZHQKetR1nuiN91fZQoaAZoCWgPQwidY0D2enfjv5SGlFKUaBVLMmgWR0CnrQsabWmQdX2UKGgGaAloD0MI7iO3Jt22AMCUhpRSlGgVSzJoFkdAp6zPS+g133V9lChoBmgJaA9DCBmveVVnNeW/lIaUUpRoFUsyaBZHQKesk8UVSGd1fZQoaAZoCWgPQwiKj0/Izpv0v5SGlFKUaBVLMmgWR0CnrlqkEcKgdX2UKGgGaAloD0MIpWYPtALDA8CUhpRSlGgVSzJoFkdAp64ehufmLnV9lChoBmgJaA9DCFWFBmLZrAnAlIaUUpRoFUsyaBZHQKet4rsjVx11fZQoaAZoCWgPQwgvibMiakIBwJSGlFKUaBVLMmgWR0CnraZ2IO6NdX2UKGgGaAloD0MISWk2j8NADMCUhpRSlGgVSzJoFkdAp69wv6CUYHV9lChoBmgJaA9DCIi4OZUMgP6/lIaUUpRoFUsyaBZHQKevNMINVip1fZQoaAZoCWgPQwhSnKOOjisHwJSGlFKUaBVLMmgWR0CnrvkaESM+dX2UKGgGaAloD0MIdsb3xaUq6r+UhpRSlGgVSzJoFkdAp6686gdwN3V9lChoBmgJaA9DCOf+6nHfKv2/lIaUUpRoFUsyaBZHQKewkMDwH7h1fZQoaAZoCWgPQwinlNdK6G7zv5SGlFKUaBVLMmgWR0CnsFSHEdeZdX2UKGgGaAloD0MIJEVkWMV7BcCUhpRSlGgVSzJoFkdAp7AYsNDtxHV9lChoBmgJaA9DCDs42JsYku6/lIaUUpRoFUsyaBZHQKev3Eehf0F1fZQoaAZoCWgPQwjrAIi7enUAwJSGlFKUaBVLMmgWR0CnsaGCyyD7dX2UKGgGaAloD0MIs5WX/E+++r+UhpRSlGgVSzJoFkdAp7FlV3ljmXV9lChoBmgJaA9DCJq0qbpH9g7AlIaUUpRoFUsyaBZHQKexKXdCVr11fZQoaAZoCWgPQwhcjexKy0j6v5SGlFKUaBVLMmgWR0CnsO0b961LdX2UKGgGaAloD0MIUdobfGFy/7+UhpRSlGgVSzJoFkdAp7K02YOUdXV9lChoBmgJaA9DCP5/nDBhlADAlIaUUpRoFUsyaBZHQKeyeJUHY6J1fZQoaAZoCWgPQwikwthCkEMCwJSGlFKUaBVLMmgWR0CnsjzBInSfdX2UKGgGaAloD0MIQrRWtDlO9L+UhpRSlGgVSzJoFkdAp7IAU+LWJHV9lChoBmgJaA9DCE1LrIxGvu+/lIaUUpRoFUsyaBZHQKezzCOWBz51fZQoaAZoCWgPQwj5ugz/6WYIwJSGlFKUaBVLMmgWR0Cns4/bsWwedX2UKGgGaAloD0MI4WJFDaYh97+UhpRSlGgVSzJoFkdAp7NUBwMpgHV9lChoBmgJaA9DCBTRr62fXgfAlIaUUpRoFUsyaBZHQKezF8qnWJ91fZQoaAZoCWgPQwibkqzD0ZUMwJSGlFKUaBVLMmgWR0CntNbZ39rHdX2UKGgGaAloD0MI3c1THXJzA8CUhpRSlGgVSzJoFkdAp7SalpGnXXV9lChoBmgJaA9DCJs90AoMmfa/lIaUUpRoFUsyaBZHQKe0XqoIfKZ1fZQoaAZoCWgPQwgqqn6l8wEAwJSGlFKUaBVLMmgWR0CntCIrOJLvdX2UKGgGaAloD0MIhV/q503lB8CUhpRSlGgVSzJoFkdAp7Xr2exwAHV9lChoBmgJaA9DCCbl7nN8NADAlIaUUpRoFUsyaBZHQKe1r6WPcSJ1fZQoaAZoCWgPQwhUjzS4re39v5SGlFKUaBVLMmgWR0CntXPTgEU1dX2UKGgGaAloD0MIE7h1N0818L+UhpRSlGgVSzJoFkdAp7U3eSB9TnV9lChoBmgJaA9DCD6WPnRBffS/lIaUUpRoFUsyaBZHQKe3ACK77Kt1fZQoaAZoCWgPQwjuCn2wjE0AwJSGlFKUaBVLMmgWR0CntsQSrYGudX2UKGgGaAloD0MIhIB8CRVcAsCUhpRSlGgVSzJoFkdAp7aIMDwH7nV9lChoBmgJaA9DCF2Kq8q+a/G/lIaUUpRoFUsyaBZHQKe2S89wFTx1fZQoaAZoCWgPQwgxzt+EQqQMwJSGlFKUaBVLMmgWR0CnuBjBVMmGdX2UKGgGaAloD0MIZof4hy29/7+UhpRSlGgVSzJoFkdAp7fcfs/puHV9lChoBmgJaA9DCN2271F/PQbAlIaUUpRoFUsyaBZHQKe3oJJGvwF1fZQoaAZoCWgPQwitFthjImX3v5SGlFKUaBVLMmgWR0Cnt2QtSQ5ndX2UKGgGaAloD0MI93ZLcsAu+r+UhpRSlGgVSzJoFkdAp7kuv8qFy3V9lChoBmgJaA9DCPH1tS41Qv2/lIaUUpRoFUsyaBZHQKe48pH7P6d1fZQoaAZoCWgPQwiZR/5g4FkAwJSGlFKUaBVLMmgWR0CnuLbJGOMmdX2UKGgGaAloD0MIyOwseqeiDMCUhpRSlGgVSzJoFkdAp7h6d8RcvHV9lChoBmgJaA9DCINuL2mMFgHAlIaUUpRoFUsyaBZHQKe6R+jM3ZR1fZQoaAZoCWgPQwhENLqD2Nn5v5SGlFKUaBVLMmgWR0Cnugu0b961dX2UKGgGaAloD0MIwMsMG2VdAcCUhpRSlGgVSzJoFkdAp7nPvWpZOnV9lChoBmgJaA9DCLHc0mpI/ArAlIaUUpRoFUsyaBZHQKe5k3z+WGB1fZQoaAZoCWgPQwgTQ3Iycev7v5SGlFKUaBVLMmgWR0Cnu11fNRm9dX2UKGgGaAloD0MIUrmJWprbBsCUhpRSlGgVSzJoFkdAp7shJf6XSnV9lChoBmgJaA9DCDgUPlsHhwLAlIaUUpRoFUsyaBZHQKe65VPva111fZQoaAZoCWgPQwh6GcVyS6sFwJSGlFKUaBVLMmgWR0CnuqjneSB9dX2UKGgGaAloD0MIGJXUCWii7r+UhpRSlGgVSzJoFkdAp7zMfigkC3V9lChoBmgJaA9DCK+ytike1/+/lIaUUpRoFUsyaBZHQKe8kQiiZfF1fZQoaAZoCWgPQwgVU+knnH0AwJSGlFKUaBVLMmgWR0CnvFYUeuFIdX2UKGgGaAloD0MIQKa1aWzPAMCUhpRSlGgVSzJoFkdAp7wacPOIInV9lChoBmgJaA9DCLSULCehFAfAlIaUUpRoFUsyaBZHQKe+kxptaZB1fZQoaAZoCWgPQwjaGhGMgysAwJSGlFKUaBVLMmgWR0CnvlesHSncdX2UKGgGaAloD0MIoE/kSdIVBcCUhpRSlGgVSzJoFkdAp74cgfU4JnV9lChoBmgJaA9DCPqzHykiowjAlIaUUpRoFUsyaBZHQKe94P91loV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (423 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.3718974235467614, "std_reward": 0.8467548137464413, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-14T11:02:44.376878"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5cef43f44b6f52fdcb7802f24aa703075f40154aa260ebcf2a516fafa36379a
3
+ size 2381