Update README.md
Browse files
README.md
CHANGED
@@ -6,6 +6,14 @@ tags:
|
|
6 |
model-index:
|
7 |
- name: deberta-v3-base_finetuned_ai4privacy_v2
|
8 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -13,73 +21,20 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# deberta-v3-base_finetuned_ai4privacy_v2
|
15 |
|
16 |
-
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- Overall Recall: 0.9732
|
21 |
-
- Overall F1: 0.9698
|
22 |
-
- Overall Accuracy: 0.9728
|
23 |
-
- Accountname F1: 1.0
|
24 |
-
- Accountnumber F1: 1.0
|
25 |
-
- Age F1: 0.9760
|
26 |
-
- Amount F1: 0.9897
|
27 |
-
- Bic F1: 0.9978
|
28 |
-
- Bitcoinaddress F1: 0.9907
|
29 |
-
- Buildingnumber F1: 0.9906
|
30 |
-
- City F1: 0.9930
|
31 |
-
- Companyname F1: 0.9994
|
32 |
-
- County F1: 0.9939
|
33 |
-
- Creditcardcvv F1: 1.0
|
34 |
-
- Creditcardissuer F1: 0.9891
|
35 |
-
- Creditcardnumber F1: 0.9590
|
36 |
-
- Currency F1: 0.9052
|
37 |
-
- Currencycode F1: 0.9875
|
38 |
-
- Currencyname F1: 0.7022
|
39 |
-
- Currencysymbol F1: 0.9892
|
40 |
-
- Date F1: 0.9126
|
41 |
-
- Dob F1: 0.7438
|
42 |
-
- Email F1: 1.0
|
43 |
-
- Ethereumaddress F1: 1.0
|
44 |
-
- Eyecolor F1: 1.0
|
45 |
-
- Firstname F1: 0.9934
|
46 |
-
- Gender F1: 0.9991
|
47 |
-
- Height F1: 1.0
|
48 |
-
- Iban F1: 1.0
|
49 |
-
- Ip F1: 0.1551
|
50 |
-
- Ipv4 F1: 0.8393
|
51 |
-
- Ipv6 F1: 0.8034
|
52 |
-
- Jobarea F1: 0.9942
|
53 |
-
- Jobtitle F1: 0.9993
|
54 |
-
- Jobtype F1: 0.9928
|
55 |
-
- Lastname F1: 0.9877
|
56 |
-
- Litecoinaddress F1: 0.9770
|
57 |
-
- Mac F1: 1.0
|
58 |
-
- Maskednumber F1: 0.9451
|
59 |
-
- Middlename F1: 0.9773
|
60 |
-
- Nearbygpscoordinate F1: 1.0
|
61 |
-
- Ordinaldirection F1: 0.9924
|
62 |
-
- Password F1: 1.0
|
63 |
-
- Phoneimei F1: 1.0
|
64 |
-
- Phonenumber F1: 1.0
|
65 |
-
- Pin F1: 0.9929
|
66 |
-
- Prefix F1: 0.9722
|
67 |
-
- Secondaryaddress F1: 0.9974
|
68 |
-
- Sex F1: 0.9949
|
69 |
-
- Ssn F1: 0.9970
|
70 |
-
- State F1: 0.9941
|
71 |
-
- Street F1: 0.9972
|
72 |
-
- Time F1: 0.9967
|
73 |
-
- Url F1: 1.0
|
74 |
-
- Useragent F1: 1.0
|
75 |
-
- Username F1: 0.9991
|
76 |
-
- Vehiclevin F1: 1.0
|
77 |
-
- Vehiclevrm F1: 1.0
|
78 |
-
- Zipcode F1: 0.9890
|
79 |
|
80 |
## Model description
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
## Intended uses & limitations
|
85 |
|
@@ -89,19 +44,84 @@ More information needed
|
|
89 |
|
90 |
More information needed
|
91 |
|
92 |
-
## Training
|
93 |
-
|
94 |
-
### Training hyperparameters
|
95 |
|
96 |
The following hyperparameters were used during training:
|
97 |
-
- learning_rate:
|
98 |
-
- train_batch_size:
|
99 |
-
- eval_batch_size:
|
100 |
-
- seed:
|
101 |
-
- optimizer: Adam with betas=(0.
|
102 |
- lr_scheduler_type: cosine_with_restarts
|
103 |
-
- lr_scheduler_warmup_ratio: 0.
|
104 |
- num_epochs: 7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
### Training results
|
107 |
|
@@ -115,10 +135,9 @@ The following hyperparameters were used during training:
|
|
115 |
| 0.0808 | 6.0 | 14358 | 0.0693 | 0.9664 | 0.9732 | 0.9698 | 0.9728 | 1.0 | 1.0 | 0.9760 | 0.9897 | 0.9978 | 0.9907 | 0.9906 | 0.9930 | 0.9994 | 0.9939 | 1.0 | 0.9891 | 0.9590 | 0.9052 | 0.9875 | 0.7022 | 0.9892 | 0.9126 | 0.7438 | 1.0 | 1.0 | 1.0 | 0.9934 | 0.9991 | 1.0 | 1.0 | 0.1551 | 0.8393 | 0.8034 | 0.9942 | 0.9993 | 0.9928 | 0.9877 | 0.9770 | 1.0 | 0.9451 | 0.9773 | 1.0 | 0.9924 | 1.0 | 1.0 | 1.0 | 0.9929 | 0.9722 | 0.9974 | 0.9949 | 0.9970 | 0.9941 | 0.9972 | 0.9967 | 1.0 | 1.0 | 0.9991 | 1.0 | 1.0 | 0.9890 |
|
116 |
| 0.0779 | 7.0 | 16751 | 0.0697 | 0.9698 | 0.9756 | 0.9727 | 0.9739 | 0.9983 | 1.0 | 0.9815 | 0.9904 | 1.0 | 0.9938 | 0.9935 | 0.9930 | 0.9994 | 0.9935 | 1.0 | 0.9903 | 0.9584 | 0.9206 | 0.9917 | 0.7753 | 0.9914 | 0.9315 | 0.8305 | 1.0 | 1.0 | 1.0 | 0.9939 | 1.0 | 1.0 | 1.0 | 0.1404 | 0.8382 | 0.8029 | 0.9958 | 1.0 | 0.9944 | 0.9910 | 0.9875 | 1.0 | 0.9480 | 0.9788 | 1.0 | 0.9924 | 1.0 | 1.0 | 1.0 | 0.9929 | 0.9747 | 0.9961 | 0.9949 | 0.9970 | 0.9925 | 0.9983 | 0.9967 | 1.0 | 1.0 | 0.9991 | 1.0 | 1.0 | 0.9953 |
|
117 |
|
118 |
-
|
119 |
### Framework versions
|
120 |
|
121 |
- Transformers 4.35.2
|
122 |
-
- Pytorch 2.1.0+
|
123 |
- Datasets 2.15.0
|
124 |
-
- Tokenizers 0.15.0
|
|
|
6 |
model-index:
|
7 |
- name: deberta-v3-base_finetuned_ai4privacy_v2
|
8 |
results: []
|
9 |
+
datasets:
|
10 |
+
- ai4privacy/pii-masking-200k
|
11 |
+
- Isotonic/pii-masking-200k
|
12 |
+
language:
|
13 |
+
- en
|
14 |
+
metrics:
|
15 |
+
- seqeval
|
16 |
+
pipeline_tag: token-classification
|
17 |
---
|
18 |
|
19 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
21 |
|
22 |
# deberta-v3-base_finetuned_ai4privacy_v2
|
23 |
|
24 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [ai4privacy/pii-masking-200k](https://huggingface.co/ai4privacy/pii-masking-200k) dataset.
|
25 |
+
|
26 |
+
## Useage
|
27 |
+
GitHub Implementation: [Ai4Privacy](https://github.com/Sripaad/ai4privacy)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## Model description
|
30 |
|
31 |
+
This model has been finetuned on the World's largest open source privacy dataset.
|
32 |
+
|
33 |
+
The purpose of the trained models is to remove personally identifiable information (PII) from text, especially in the context of AI assistants and LLMs.
|
34 |
+
|
35 |
+
The example texts have 54 PII classes (types of sensitive data), targeting 229 discussion subjects / use cases split across business, education, psychology and legal fields, and 5 interactions styles (e.g. casual conversation, formal document, emails etc...).
|
36 |
+
|
37 |
+
Take a look at the Github implementation for specific reasearch.
|
38 |
|
39 |
## Intended uses & limitations
|
40 |
|
|
|
44 |
|
45 |
More information needed
|
46 |
|
47 |
+
## Training hyperparameters
|
|
|
|
|
48 |
|
49 |
The following hyperparameters were used during training:
|
50 |
+
- learning_rate: 6e-04
|
51 |
+
- train_batch_size: 32
|
52 |
+
- eval_batch_size: 32
|
53 |
+
- seed: 412
|
54 |
+
- optimizer: Adam with betas=(0.96,0.996) and epsilon=1e-08
|
55 |
- lr_scheduler_type: cosine_with_restarts
|
56 |
+
- lr_scheduler_warmup_ratio: 0.22
|
57 |
- num_epochs: 7
|
58 |
+
- mixed_precision_training: N/A
|
59 |
+
|
60 |
+
## Class wise metrics
|
61 |
+
It achieves the following results on the evaluation set:
|
62 |
+
|
63 |
+
- Loss: 0.0211
|
64 |
+
- Overall Precision: 0.9722
|
65 |
+
- Overall Recall: 0.9792
|
66 |
+
- Overall F1: 0.9757
|
67 |
+
- Overall Accuracy: 0.9915
|
68 |
+
|
69 |
+
- Accountname F1: 0.9993
|
70 |
+
- Accountnumber F1: 0.9986
|
71 |
+
- Age F1: 0.9884
|
72 |
+
- Amount F1: 0.9984
|
73 |
+
- Bic F1: 0.9942
|
74 |
+
- Bitcoinaddress F1: 0.9974
|
75 |
+
- Buildingnumber F1: 0.9898
|
76 |
+
- City F1: 1.0
|
77 |
+
- Companyname F1: 1.0
|
78 |
+
- County F1: 0.9976
|
79 |
+
- Creditcardcvv F1: 0.9541
|
80 |
+
- Creditcardissuer F1: 0.9970
|
81 |
+
- Creditcardnumber F1: 0.9754
|
82 |
+
- Currency F1: 0.8966
|
83 |
+
- Currencycode F1: 0.9946
|
84 |
+
- Currencyname F1: 0.7697
|
85 |
+
- Currencysymbol F1: 0.9958
|
86 |
+
- Date F1: 0.9778
|
87 |
+
- Dob F1: 0.9546
|
88 |
+
- Email F1: 1.0
|
89 |
+
- Ethereumaddress F1: 1.0
|
90 |
+
- Eyecolor F1: 0.9925
|
91 |
+
- Firstname F1: 0.9947
|
92 |
+
- Gender F1: 1.0
|
93 |
+
- Height F1: 1.0
|
94 |
+
- Iban F1: 0.9978
|
95 |
+
- Ip F1: 0.5404
|
96 |
+
- Ipv4 F1: 0.8455
|
97 |
+
- Ipv6 F1: 0.8855
|
98 |
+
- Jobarea F1: 0.9091
|
99 |
+
- Jobtitle F1: 1.0
|
100 |
+
- Jobtype F1: 0.9672
|
101 |
+
- Lastname F1: 0.9855
|
102 |
+
- Litecoinaddress F1: 0.9949
|
103 |
+
- Mac F1: 0.9965
|
104 |
+
- Maskednumber F1: 0.9836
|
105 |
+
- Middlename F1: 0.7385
|
106 |
+
- Nearbygpscoordinate F1: 1.0
|
107 |
+
- Ordinaldirection F1: 1.0
|
108 |
+
- Password F1: 1.0
|
109 |
+
- Phoneimei F1: 0.9978
|
110 |
+
- Phonenumber F1: 0.9975
|
111 |
+
- Pin F1: 0.9820
|
112 |
+
- Prefix F1: 0.9872
|
113 |
+
- Secondaryaddress F1: 1.0
|
114 |
+
- Sex F1: 0.9916
|
115 |
+
- Ssn F1: 0.9960
|
116 |
+
- State F1: 0.9967
|
117 |
+
- Street F1: 0.9991
|
118 |
+
- Time F1: 1.0
|
119 |
+
- Url F1: 1.0
|
120 |
+
- Useragent F1: 0.9981
|
121 |
+
- Username F1: 1.0
|
122 |
+
- Vehiclevin F1: 0.9950
|
123 |
+
- Vehiclevrm F1: 0.9870
|
124 |
+
- Zipcode F1: 0.9966
|
125 |
|
126 |
### Training results
|
127 |
|
|
|
135 |
| 0.0808 | 6.0 | 14358 | 0.0693 | 0.9664 | 0.9732 | 0.9698 | 0.9728 | 1.0 | 1.0 | 0.9760 | 0.9897 | 0.9978 | 0.9907 | 0.9906 | 0.9930 | 0.9994 | 0.9939 | 1.0 | 0.9891 | 0.9590 | 0.9052 | 0.9875 | 0.7022 | 0.9892 | 0.9126 | 0.7438 | 1.0 | 1.0 | 1.0 | 0.9934 | 0.9991 | 1.0 | 1.0 | 0.1551 | 0.8393 | 0.8034 | 0.9942 | 0.9993 | 0.9928 | 0.9877 | 0.9770 | 1.0 | 0.9451 | 0.9773 | 1.0 | 0.9924 | 1.0 | 1.0 | 1.0 | 0.9929 | 0.9722 | 0.9974 | 0.9949 | 0.9970 | 0.9941 | 0.9972 | 0.9967 | 1.0 | 1.0 | 0.9991 | 1.0 | 1.0 | 0.9890 |
|
136 |
| 0.0779 | 7.0 | 16751 | 0.0697 | 0.9698 | 0.9756 | 0.9727 | 0.9739 | 0.9983 | 1.0 | 0.9815 | 0.9904 | 1.0 | 0.9938 | 0.9935 | 0.9930 | 0.9994 | 0.9935 | 1.0 | 0.9903 | 0.9584 | 0.9206 | 0.9917 | 0.7753 | 0.9914 | 0.9315 | 0.8305 | 1.0 | 1.0 | 1.0 | 0.9939 | 1.0 | 1.0 | 1.0 | 0.1404 | 0.8382 | 0.8029 | 0.9958 | 1.0 | 0.9944 | 0.9910 | 0.9875 | 1.0 | 0.9480 | 0.9788 | 1.0 | 0.9924 | 1.0 | 1.0 | 1.0 | 0.9929 | 0.9747 | 0.9961 | 0.9949 | 0.9970 | 0.9925 | 0.9983 | 0.9967 | 1.0 | 1.0 | 0.9991 | 1.0 | 1.0 | 0.9953 |
|
137 |
|
|
|
138 |
### Framework versions
|
139 |
|
140 |
- Transformers 4.35.2
|
141 |
+
- Pytorch 2.1.0+cu118
|
142 |
- Datasets 2.15.0
|
143 |
+
- Tokenizers 0.15.0
|