Upload folder using huggingface_hub
Browse files- xlm_roberta_large.ipynb +0 -0
- xlm_roberta_large.py +263 -0
xlm_roberta_large.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
xlm_roberta_large.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""xlm-roberta-large.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/18YiC93vkjig-o550pHFJSB3bCQ7rhb4M
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install transformers datasets seqeval huggingface_hub
|
11 |
+
|
12 |
+
# Standard library imports
|
13 |
+
import os # Provides functions for interacting with the operating system
|
14 |
+
import warnings # Used to handle or suppress warnings
|
15 |
+
import numpy as np # Essential for numerical operations and array manipulation
|
16 |
+
import torch # PyTorch library for tensor computations and model handling
|
17 |
+
import ast # Used for safe evaluation of strings to Python objects (e.g., parsing tokens)
|
18 |
+
|
19 |
+
# Hugging Face and Transformers imports
|
20 |
+
from datasets import load_dataset # Loads datasets for model training and evaluation
|
21 |
+
from transformers import (
|
22 |
+
AutoTokenizer, # Initializes a tokenizer from a pre-trained model
|
23 |
+
DataCollatorForTokenClassification, # Handles padding and formatting of token classification data
|
24 |
+
TrainingArguments, # Defines training parameters like batch size and learning rate
|
25 |
+
Trainer, # High-level API for managing training and evaluation
|
26 |
+
AutoModelForTokenClassification, # Loads a pre-trained model for token classification tasks
|
27 |
+
get_linear_schedule_with_warmup, # Learning rate scheduler for gradual warm-up and linear decay
|
28 |
+
EarlyStoppingCallback # Callback to stop training if validation performance plateaus
|
29 |
+
)
|
30 |
+
|
31 |
+
# Hugging Face Hub
|
32 |
+
from huggingface_hub import login # Allows logging in to Hugging Face Hub to upload models
|
33 |
+
|
34 |
+
# seqeval metrics for NER evaluation
|
35 |
+
from seqeval.metrics import precision_score, recall_score, f1_score, classification_report
|
36 |
+
# Provides precision, recall, F1-score, and classification report for evaluating NER model performance
|
37 |
+
|
38 |
+
# Log in to Hugging Face Hub
|
39 |
+
login(token="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")
|
40 |
+
|
41 |
+
# Disable WandB (Weights & Biases) logging to avoid unwanted log outputs during training
|
42 |
+
os.environ["WANDB_DISABLED"] = "true"
|
43 |
+
|
44 |
+
# Suppress warning messages to keep output clean, especially during training and evaluation
|
45 |
+
warnings.filterwarnings("ignore")
|
46 |
+
|
47 |
+
# Load the Azerbaijani NER dataset from Hugging Face
|
48 |
+
dataset = load_dataset("LocalDoc/azerbaijani-ner-dataset")
|
49 |
+
print(dataset) # Display dataset structure (e.g., train/validation splits)
|
50 |
+
|
51 |
+
# Preprocessing function to format tokens and NER tags correctly
|
52 |
+
def preprocess_example(example):
|
53 |
+
try:
|
54 |
+
# Convert string of tokens to a list and parse NER tags to integers
|
55 |
+
example["tokens"] = ast.literal_eval(example["tokens"])
|
56 |
+
example["ner_tags"] = list(map(int, ast.literal_eval(example["ner_tags"])))
|
57 |
+
except (ValueError, SyntaxError) as e:
|
58 |
+
# Skip and log malformed examples, ensuring error resilience
|
59 |
+
print(f"Skipping malformed example: {example['index']} due to error: {e}")
|
60 |
+
example["tokens"] = []
|
61 |
+
example["ner_tags"] = []
|
62 |
+
return example
|
63 |
+
|
64 |
+
# Apply preprocessing to each dataset entry, ensuring consistent formatting
|
65 |
+
dataset = dataset.map(preprocess_example)
|
66 |
+
|
67 |
+
# Initialize the tokenizer for multilingual NER using xlm-roberta-large
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large")
|
69 |
+
|
70 |
+
# Function to tokenize input and align labels with tokenized words
|
71 |
+
def tokenize_and_align_labels(example):
|
72 |
+
# Tokenize the sentence while preserving word boundaries for correct NER tag alignment
|
73 |
+
tokenized_inputs = tokenizer(
|
74 |
+
example["tokens"], # List of words (tokens) in the sentence
|
75 |
+
truncation=True, # Truncate sentences longer than max_length
|
76 |
+
is_split_into_words=True, # Specify that input is a list of words
|
77 |
+
padding="max_length", # Pad to maximum sequence length
|
78 |
+
max_length=128, # Set the maximum sequence length to 128 tokens
|
79 |
+
)
|
80 |
+
|
81 |
+
labels = [] # List to store aligned NER labels
|
82 |
+
word_ids = tokenized_inputs.word_ids() # Get word IDs for each token
|
83 |
+
previous_word_idx = None # Initialize previous word index for tracking
|
84 |
+
|
85 |
+
# Loop through word indices to align NER tags with subword tokens
|
86 |
+
for word_idx in word_ids:
|
87 |
+
if word_idx is None:
|
88 |
+
labels.append(-100) # Set padding token labels to -100 (ignored in loss)
|
89 |
+
elif word_idx != previous_word_idx:
|
90 |
+
# Assign the label from example's NER tags if word index matches
|
91 |
+
labels.append(example["ner_tags"][word_idx] if word_idx < len(example["ner_tags"]) else -100)
|
92 |
+
else:
|
93 |
+
labels.append(-100) # Label subword tokens with -100 to avoid redundant labels
|
94 |
+
previous_word_idx = word_idx # Update previous word index
|
95 |
+
|
96 |
+
tokenized_inputs["labels"] = labels # Add labels to tokenized inputs
|
97 |
+
return tokenized_inputs
|
98 |
+
|
99 |
+
# Apply tokenization and label alignment function to the dataset
|
100 |
+
tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=False)
|
101 |
+
|
102 |
+
# Create a 90-10 split of the dataset for training and validation
|
103 |
+
tokenized_datasets = tokenized_datasets["train"].train_test_split(test_size=0.1)
|
104 |
+
print(tokenized_datasets) # Output structure of split datasets
|
105 |
+
|
106 |
+
# Define a list of entity labels for NER tagging with B- (beginning) and I- (inside) markers
|
107 |
+
label_list = [
|
108 |
+
"O", # Outside of a named entity
|
109 |
+
"B-PERSON", "I-PERSON", # Person name (e.g., "John" in "John Doe")
|
110 |
+
"B-LOCATION", "I-LOCATION", # Geographical location (e.g., "Paris")
|
111 |
+
"B-ORGANISATION", "I-ORGANISATION", # Organization name (e.g., "UNICEF")
|
112 |
+
"B-DATE", "I-DATE", # Date entity (e.g., "2024-11-05")
|
113 |
+
"B-TIME", "I-TIME", # Time (e.g., "12:00 PM")
|
114 |
+
"B-MONEY", "I-MONEY", # Monetary values (e.g., "$20")
|
115 |
+
"B-PERCENTAGE", "I-PERCENTAGE", # Percentage values (e.g., "20%")
|
116 |
+
"B-FACILITY", "I-FACILITY", # Physical facilities (e.g., "Airport")
|
117 |
+
"B-PRODUCT", "I-PRODUCT", # Product names (e.g., "iPhone")
|
118 |
+
"B-EVENT", "I-EVENT", # Named events (e.g., "Olympics")
|
119 |
+
"B-ART", "I-ART", # Works of art (e.g., "Mona Lisa")
|
120 |
+
"B-LAW", "I-LAW", # Laws and legal documents (e.g., "Article 50")
|
121 |
+
"B-LANGUAGE", "I-LANGUAGE", # Languages (e.g., "Azerbaijani")
|
122 |
+
"B-GPE", "I-GPE", # Geopolitical entities (e.g., "Europe")
|
123 |
+
"B-NORP", "I-NORP", # Nationalities, religious groups, political groups
|
124 |
+
"B-ORDINAL", "I-ORDINAL", # Ordinal indicators (e.g., "first", "second")
|
125 |
+
"B-CARDINAL", "I-CARDINAL", # Cardinal numbers (e.g., "three")
|
126 |
+
"B-DISEASE", "I-DISEASE", # Diseases (e.g., "COVID-19")
|
127 |
+
"B-CONTACT", "I-CONTACT", # Contact info (e.g., email or phone number)
|
128 |
+
"B-ADAGE", "I-ADAGE", # Common sayings or adages
|
129 |
+
"B-QUANTITY", "I-QUANTITY", # Quantities (e.g., "5 km")
|
130 |
+
"B-MISCELLANEOUS", "I-MISCELLANEOUS", # Miscellaneous entities not fitting other categories
|
131 |
+
"B-POSITION", "I-POSITION", # Job titles or positions (e.g., "CEO")
|
132 |
+
"B-PROJECT", "I-PROJECT" # Project names (e.g., "Project Apollo")
|
133 |
+
]
|
134 |
+
|
135 |
+
# Initialize a data collator to handle padding and formatting for token classification
|
136 |
+
data_collator = DataCollatorForTokenClassification(tokenizer)
|
137 |
+
|
138 |
+
# Load a pre-trained model for token classification, adapted for NER tasks
|
139 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
140 |
+
"xlm-roberta-large", # Base model (multilingual XLM-RoBERTa) for NER
|
141 |
+
num_labels=len(label_list) # Set the number of output labels to match NER categories
|
142 |
+
)
|
143 |
+
|
144 |
+
# Define a function to compute evaluation metrics for the model's predictions
|
145 |
+
def compute_metrics(p):
|
146 |
+
predictions, labels = p # Unpack predictions and true labels from the input
|
147 |
+
|
148 |
+
# Convert logits to predicted label indices by taking the argmax along the last axis
|
149 |
+
predictions = np.argmax(predictions, axis=2)
|
150 |
+
|
151 |
+
# Filter out special padding labels (-100) and convert indices to label names
|
152 |
+
true_labels = [[label_list[l] for l in label if l != -100] for label in labels]
|
153 |
+
true_predictions = [
|
154 |
+
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
|
155 |
+
for prediction, label in zip(predictions, labels)
|
156 |
+
]
|
157 |
+
|
158 |
+
# Print a detailed classification report for each label category
|
159 |
+
print(classification_report(true_labels, true_predictions))
|
160 |
+
|
161 |
+
# Calculate and return key evaluation metrics
|
162 |
+
return {
|
163 |
+
# Precision measures the accuracy of predicted positive instances
|
164 |
+
# Important in NER to ensure entity predictions are correct and reduce false positives.
|
165 |
+
"precision": precision_score(true_labels, true_predictions),
|
166 |
+
|
167 |
+
# Recall measures the model's ability to capture all relevant entities
|
168 |
+
# Essential in NER to ensure the model captures all entities, reducing false negatives.
|
169 |
+
"recall": recall_score(true_labels, true_predictions),
|
170 |
+
|
171 |
+
# F1-score is the harmonic mean of precision and recall, balancing both metrics
|
172 |
+
# Useful in NER for providing an overall performance measure, especially when precision and recall are both important.
|
173 |
+
"f1": f1_score(true_labels, true_predictions),
|
174 |
+
}
|
175 |
+
|
176 |
+
# Set up training arguments for model training, defining essential training configurations
|
177 |
+
training_args = TrainingArguments(
|
178 |
+
output_dir="./results", # Directory to save model checkpoints and final outputs
|
179 |
+
evaluation_strategy="epoch", # Evaluate model on the validation set at the end of each epoch
|
180 |
+
save_strategy="epoch", # Save model checkpoints at the end of each epoch
|
181 |
+
learning_rate=2e-5, # Set a low learning rate to ensure stable training for fine-tuning
|
182 |
+
per_device_train_batch_size=128, # Number of examples per batch during training, balancing speed and memory
|
183 |
+
per_device_eval_batch_size=128, # Number of examples per batch during evaluation
|
184 |
+
num_train_epochs=12, # Number of full training passes over the dataset
|
185 |
+
weight_decay=0.005, # Regularization term to prevent overfitting by penalizing large weights
|
186 |
+
fp16=True, # Use 16-bit floating point for faster and memory-efficient training
|
187 |
+
logging_dir='./logs', # Directory to store training logs
|
188 |
+
save_total_limit=2, # Keep only the 2 latest model checkpoints to save storage space
|
189 |
+
load_best_model_at_end=True, # Load the best model based on metrics at the end of training
|
190 |
+
metric_for_best_model="f1", # Use F1-score to determine the best model checkpoint
|
191 |
+
report_to="none" # Disable reporting to external services (useful in local runs)
|
192 |
+
)
|
193 |
+
|
194 |
+
# Initialize the Trainer class to manage the training loop with all necessary components
|
195 |
+
trainer = Trainer(
|
196 |
+
model=model, # The pre-trained model to be fine-tuned
|
197 |
+
args=training_args, # Training configuration parameters defined in TrainingArguments
|
198 |
+
train_dataset=tokenized_datasets["train"], # Tokenized training dataset
|
199 |
+
eval_dataset=tokenized_datasets["test"], # Tokenized validation dataset
|
200 |
+
tokenizer=tokenizer, # Tokenizer used for processing input text
|
201 |
+
data_collator=data_collator, # Data collator for padding and batching during training
|
202 |
+
compute_metrics=compute_metrics, # Function to calculate evaluation metrics like precision, recall, F1
|
203 |
+
callbacks=[EarlyStoppingCallback(early_stopping_patience=5)] # Stop training early if validation metrics don't improve for 2 epochs
|
204 |
+
)
|
205 |
+
|
206 |
+
# Begin the training process and capture the training metrics
|
207 |
+
training_metrics = trainer.train()
|
208 |
+
|
209 |
+
# Evaluate the model on the validation set after training
|
210 |
+
eval_results = trainer.evaluate()
|
211 |
+
|
212 |
+
# Print evaluation results, including precision, recall, and F1-score
|
213 |
+
print(eval_results)
|
214 |
+
|
215 |
+
# Define the directory where the trained model and tokenizer will be saved
|
216 |
+
save_directory = "./xlm-roberta-large"
|
217 |
+
|
218 |
+
# Save the trained model to the specified directory
|
219 |
+
model.save_pretrained(save_directory)
|
220 |
+
|
221 |
+
# Save the tokenizer to the same directory for compatibility with the model
|
222 |
+
tokenizer.save_pretrained(save_directory)
|
223 |
+
|
224 |
+
from transformers import pipeline
|
225 |
+
|
226 |
+
# Load tokenizer and model
|
227 |
+
tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
228 |
+
model = AutoModelForTokenClassification.from_pretrained(save_directory)
|
229 |
+
|
230 |
+
# Initialize the NER pipeline
|
231 |
+
device = 0 if torch.cuda.is_available() else -1
|
232 |
+
nlp_ner = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple", device=device)
|
233 |
+
|
234 |
+
label_mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list) if label != "O"}
|
235 |
+
|
236 |
+
def evaluate_model(test_texts, true_labels):
|
237 |
+
predictions = []
|
238 |
+
for i, text in enumerate(test_texts):
|
239 |
+
pred_entities = nlp_ner(text)
|
240 |
+
pred_labels = [label_mapping.get(entity["entity_group"], "O") for entity in pred_entities if entity["entity_group"] in label_mapping]
|
241 |
+
if len(pred_labels) != len(true_labels[i]):
|
242 |
+
print(f"Warning: Inconsistent number of entities in sample {i+1}. Adjusting predicted entities.")
|
243 |
+
pred_labels = pred_labels[:len(true_labels[i])]
|
244 |
+
predictions.append(pred_labels)
|
245 |
+
if all(len(true) == len(pred) for true, pred in zip(true_labels, predictions)):
|
246 |
+
precision = precision_score(true_labels, predictions)
|
247 |
+
recall = recall_score(true_labels, predictions)
|
248 |
+
f1 = f1_score(true_labels, predictions)
|
249 |
+
print("Precision:", precision)
|
250 |
+
print("Recall:", recall)
|
251 |
+
print("F1-Score:", f1)
|
252 |
+
print(classification_report(true_labels, predictions))
|
253 |
+
else:
|
254 |
+
print("Error: Could not align all samples correctly for evaluation.")
|
255 |
+
|
256 |
+
test_texts = ["Shahla Khuduyeva və Pasha Sığorta şirkəti haqqında məlumat."]
|
257 |
+
true_labels = [["B-PERSON", "B-ORGANISATION"]]
|
258 |
+
evaluate_model(test_texts, true_labels)
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
|