azeri-turkish-bert-ner / azeri-turkish-bert-ner.py
IsmatS's picture
Upload folder using huggingface_hub
a3d058c verified
raw
history blame
14.6 kB
# -*- coding: utf-8 -*-
"""Azeri-Turkish-BERT-NER.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1_vQDhrFp16kCtjJB5mENIT6jl5kkb03o
"""
!pip install transformers datasets seqeval huggingface_hub
# Standard library imports
import os # Provides functions for interacting with the operating system
import warnings # Used to handle or suppress warnings
import numpy as np # Essential for numerical operations and array manipulation
import torch # PyTorch library for tensor computations and model handling
import ast # Used for safe evaluation of strings to Python objects (e.g., parsing tokens)
# Hugging Face and Transformers imports
from datasets import load_dataset # Loads datasets for model training and evaluation
from transformers import (
AutoTokenizer, # Initializes a tokenizer from a pre-trained model
DataCollatorForTokenClassification, # Handles padding and formatting of token classification data
TrainingArguments, # Defines training parameters like batch size and learning rate
Trainer, # High-level API for managing training and evaluation
AutoModelForTokenClassification, # Loads a pre-trained model for token classification tasks
get_linear_schedule_with_warmup, # Learning rate scheduler for gradual warm-up and linear decay
EarlyStoppingCallback # Callback to stop training if validation performance plateaus
)
# Hugging Face Hub
from huggingface_hub import login # Allows logging in to Hugging Face Hub to upload models
# seqeval metrics for NER evaluation
from seqeval.metrics import precision_score, recall_score, f1_score, classification_report
# Provides precision, recall, F1-score, and classification report for evaluating NER model performance
# Log in to Hugging Face Hub
login(token="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")
# Disable WandB (Weights & Biases) logging to avoid unwanted log outputs during training
os.environ["WANDB_DISABLED"] = "true"
# Suppress warning messages to keep output clean, especially during training and evaluation
warnings.filterwarnings("ignore")
# Load the Azerbaijani NER dataset from Hugging Face
dataset = load_dataset("LocalDoc/azerbaijani-ner-dataset")
print(dataset) # Display dataset structure (e.g., train/validation splits)
# Preprocessing function to format tokens and NER tags correctly
def preprocess_example(example):
try:
# Convert string of tokens to a list and parse NER tags to integers
example["tokens"] = ast.literal_eval(example["tokens"])
example["ner_tags"] = list(map(int, ast.literal_eval(example["ner_tags"])))
except (ValueError, SyntaxError) as e:
# Skip and log malformed examples, ensuring error resilience
print(f"Skipping malformed example: {example['index']} due to error: {e}")
example["tokens"] = []
example["ner_tags"] = []
return example
# Apply preprocessing to each dataset entry, ensuring consistent formatting
dataset = dataset.map(preprocess_example)
# Initialize the tokenizer for multilingual NER using xlm-roberta-large
# tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
# Function to tokenize input and align labels with tokenized words
def tokenize_and_align_labels(example):
# Tokenize the sentence while preserving word boundaries for correct NER tag alignment
tokenized_inputs = tokenizer(
example["tokens"], # List of words (tokens) in the sentence
truncation=True, # Truncate sentences longer than max_length
is_split_into_words=True, # Specify that input is a list of words
padding="max_length", # Pad to maximum sequence length
max_length=128, # Set the maximum sequence length to 128 tokens
)
labels = [] # List to store aligned NER labels
word_ids = tokenized_inputs.word_ids() # Get word IDs for each token
previous_word_idx = None # Initialize previous word index for tracking
# Loop through word indices to align NER tags with subword tokens
for word_idx in word_ids:
if word_idx is None:
labels.append(-100) # Set padding token labels to -100 (ignored in loss)
elif word_idx != previous_word_idx:
# Assign the label from example's NER tags if word index matches
labels.append(example["ner_tags"][word_idx] if word_idx < len(example["ner_tags"]) else -100)
else:
labels.append(-100) # Label subword tokens with -100 to avoid redundant labels
previous_word_idx = word_idx # Update previous word index
tokenized_inputs["labels"] = labels # Add labels to tokenized inputs
return tokenized_inputs
# Apply tokenization and label alignment function to the dataset
tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=False)
# Create a 90-10 split of the dataset for training and validation
tokenized_datasets = tokenized_datasets["train"].train_test_split(test_size=0.1)
print(tokenized_datasets) # Output structure of split datasets
# Define a list of entity labels for NER tagging with B- (beginning) and I- (inside) markers
label_list = [
"O", # Outside of a named entity
"B-PERSON", "I-PERSON", # Person name (e.g., "John" in "John Doe")
"B-LOCATION", "I-LOCATION", # Geographical location (e.g., "Paris")
"B-ORGANISATION", "I-ORGANISATION", # Organization name (e.g., "UNICEF")
"B-DATE", "I-DATE", # Date entity (e.g., "2024-11-05")
"B-TIME", "I-TIME", # Time (e.g., "12:00 PM")
"B-MONEY", "I-MONEY", # Monetary values (e.g., "$20")
"B-PERCENTAGE", "I-PERCENTAGE", # Percentage values (e.g., "20%")
"B-FACILITY", "I-FACILITY", # Physical facilities (e.g., "Airport")
"B-PRODUCT", "I-PRODUCT", # Product names (e.g., "iPhone")
"B-EVENT", "I-EVENT", # Named events (e.g., "Olympics")
"B-ART", "I-ART", # Works of art (e.g., "Mona Lisa")
"B-LAW", "I-LAW", # Laws and legal documents (e.g., "Article 50")
"B-LANGUAGE", "I-LANGUAGE", # Languages (e.g., "Azerbaijani")
"B-GPE", "I-GPE", # Geopolitical entities (e.g., "Europe")
"B-NORP", "I-NORP", # Nationalities, religious groups, political groups
"B-ORDINAL", "I-ORDINAL", # Ordinal indicators (e.g., "first", "second")
"B-CARDINAL", "I-CARDINAL", # Cardinal numbers (e.g., "three")
"B-DISEASE", "I-DISEASE", # Diseases (e.g., "COVID-19")
"B-CONTACT", "I-CONTACT", # Contact info (e.g., email or phone number)
"B-ADAGE", "I-ADAGE", # Common sayings or adages
"B-QUANTITY", "I-QUANTITY", # Quantities (e.g., "5 km")
"B-MISCELLANEOUS", "I-MISCELLANEOUS", # Miscellaneous entities not fitting other categories
"B-POSITION", "I-POSITION", # Job titles or positions (e.g., "CEO")
"B-PROJECT", "I-PROJECT" # Project names (e.g., "Project Apollo")
]
# Initialize a data collator to handle padding and formatting for token classification
data_collator = DataCollatorForTokenClassification(tokenizer)
# Load a pre-trained model for token classification, adapted for NER tasks
# model = AutoModelForTokenClassification.from_pretrained(
# "xlm-roberta-large", # Base model (multilingual XLM-RoBERTa) for NER
# num_labels=len(label_list) # Set the number of output labels to match NER categories
# )
model = AutoModelForTokenClassification.from_pretrained(
"akdeniz27/bert-base-turkish-cased-ner",
num_labels=len(label_list), # Ensure this matches the number of labels for your NER task
ignore_mismatched_sizes=True # Allow loading despite mismatched classifier layer size
)
# Define a function to compute evaluation metrics for the model's predictions
def compute_metrics(p):
predictions, labels = p # Unpack predictions and true labels from the input
# Convert logits to predicted label indices by taking the argmax along the last axis
predictions = np.argmax(predictions, axis=2)
# Filter out special padding labels (-100) and convert indices to label names
true_labels = [[label_list[l] for l in label if l != -100] for label in labels]
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
# Print a detailed classification report for each label category
print(classification_report(true_labels, true_predictions))
# Calculate and return key evaluation metrics
return {
# Precision measures the accuracy of predicted positive instances
# Important in NER to ensure entity predictions are correct and reduce false positives.
"precision": precision_score(true_labels, true_predictions),
# Recall measures the model's ability to capture all relevant entities
# Essential in NER to ensure the model captures all entities, reducing false negatives.
"recall": recall_score(true_labels, true_predictions),
# F1-score is the harmonic mean of precision and recall, balancing both metrics
# Useful in NER for providing an overall performance measure, especially when precision and recall are both important.
"f1": f1_score(true_labels, true_predictions),
}
# Set up training arguments for model training, defining essential training configurations
training_args = TrainingArguments(
output_dir="./results", # Directory to save model checkpoints and final outputs
evaluation_strategy="epoch", # Evaluate model on the validation set at the end of each epoch
save_strategy="epoch", # Save model checkpoints at the end of each epoch
learning_rate=2e-5, # Set a low learning rate to ensure stable training for fine-tuning
per_device_train_batch_size=128, # Number of examples per batch during training, balancing speed and memory
per_device_eval_batch_size=128, # Number of examples per batch during evaluation
num_train_epochs=10, # Number of full training passes over the dataset
weight_decay=0.005, # Regularization term to prevent overfitting by penalizing large weights
fp16=True, # Use 16-bit floating point for faster and memory-efficient training
logging_dir='./logs', # Directory to store training logs
save_total_limit=2, # Keep only the 2 latest model checkpoints to save storage space
load_best_model_at_end=True, # Load the best model based on metrics at the end of training
metric_for_best_model="f1", # Use F1-score to determine the best model checkpoint
report_to="none" # Disable reporting to external services (useful in local runs)
)
# Initialize the Trainer class to manage the training loop with all necessary components
trainer = Trainer(
model=model, # The pre-trained model to be fine-tuned
args=training_args, # Training configuration parameters defined in TrainingArguments
train_dataset=tokenized_datasets["train"], # Tokenized training dataset
eval_dataset=tokenized_datasets["test"], # Tokenized validation dataset
tokenizer=tokenizer, # Tokenizer used for processing input text
data_collator=data_collator, # Data collator for padding and batching during training
compute_metrics=compute_metrics, # Function to calculate evaluation metrics like precision, recall, F1
callbacks=[EarlyStoppingCallback(early_stopping_patience=5)] # Stop training early if validation metrics don't improve for 2 epochs
)
# Begin the training process and capture the training metrics
training_metrics = trainer.train()
# Evaluate the model on the validation set after training
eval_results = trainer.evaluate()
# Print evaluation results, including precision, recall, and F1-score
print(eval_results)
# Define the directory where the trained model and tokenizer will be saved
save_directory = "./Azeri-Turkish-BERT-NER"
# Save the trained model to the specified directory
model.save_pretrained(save_directory)
# Save the tokenizer to the same directory for compatibility with the model
tokenizer.save_pretrained(save_directory)
from transformers import pipeline
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(save_directory)
model = AutoModelForTokenClassification.from_pretrained(save_directory)
# Initialize the NER pipeline
device = 0 if torch.cuda.is_available() else -1
nlp_ner = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple", device=device)
label_mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list) if label != "O"}
def evaluate_model(test_texts, true_labels):
predictions = []
for i, text in enumerate(test_texts):
pred_entities = nlp_ner(text)
pred_labels = [label_mapping.get(entity["entity_group"], "O") for entity in pred_entities if entity["entity_group"] in label_mapping]
if len(pred_labels) != len(true_labels[i]):
print(f"Warning: Inconsistent number of entities in sample {i+1}. Adjusting predicted entities.")
pred_labels = pred_labels[:len(true_labels[i])]
predictions.append(pred_labels)
if all(len(true) == len(pred) for true, pred in zip(true_labels, predictions)):
precision = precision_score(true_labels, predictions)
recall = recall_score(true_labels, predictions)
f1 = f1_score(true_labels, predictions)
print("Precision:", precision)
print("Recall:", recall)
print("F1-Score:", f1)
print(classification_report(true_labels, predictions))
else:
print("Error: Could not align all samples correctly for evaluation.")
test_texts = ["Shahla Khuduyeva və Pasha Sığorta şirkəti haqqında məlumat."]
true_labels = [["B-PERSON", "B-ORGANISATION"]]
evaluate_model(test_texts, true_labels)