IshTale commited on
Commit
d1ff998
·
verified ·
1 Parent(s): 2fccea5

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:269337
9
+ - loss:CoSENTLoss
10
+ base_model: intfloat/multilingual-e5-large
11
+ widget:
12
+ - source_sentence: motion-activated security light with adjustable settings
13
+ sentences:
14
+ - LED Black Motion Sensor 2-Light Bullet Flood Light- 3000K Adjustable Dual Head
15
+ Outdoor Security Light, Dusk to Dawn, Waterproof, Hardwired Spotlight for Yard,
16
+ Patio, Garage, Landscape
17
+ - Waterpik Cordless Advanced Water Flosser
18
+ - Tabi Ballet Flats Shoes for Women Rounde Toe Wide Width Split Toe Low Heel Comfortable
19
+ Flats Shoes
20
+ - source_sentence: microdevice for line smoothing
21
+ sentences:
22
+ - SkinMedica TNS Advanced+ Serum
23
+ - Waterproof Beach Bag for Women with Phone Pouch, Large Tote Bag for Pool, Travel
24
+ and Vacation
25
+ - Fisher-Price 4-in-1 Step 'n Play Piano
26
+ - source_sentence: hair strengthening serum
27
+ sentences:
28
+ - Yaheetech Adjustable Dumbbell Set Free Weight Dumbbells 40lbs/52.5lbs/90lbs Fast
29
+ Adjust Dumbbells Dumbbell Weight Set, with Tray for Men/Women Strength Training
30
+ Equipment
31
+ - DeLonghi Dedica Arte Espresso Machine
32
+ - Opalescence Go Teeth Whitening Trays
33
+ - source_sentence: slime making kit with glue and additives
34
+ sentences:
35
+ - Faber-Castell Polychromos Color Pencils Set of 120
36
+ - Keter Delivery Box for Porch with Lockable Secure Storage Compartment to Keep
37
+ Packages Safe, One Size, Brown
38
+ - Stillman & Birn Zeta Series Sketchbook
39
+ - source_sentence: antioxidant serum for skin protection
40
+ sentences:
41
+ - Louisville Ladder 16-foot Fiberglass Extension Ladder
42
+ - Crayola Light Up Tracing Pad
43
+ - Logitech MX Master 3S Wireless Mouse
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ ---
47
+
48
+ # SentenceTransformer based on intfloat/multilingual-e5-large
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 -->
57
+ - **Maximum Sequence Length:** 512 tokens
58
+ - **Output Dimensionality:** 1024 dimensions
59
+ - **Similarity Function:** Cosine Similarity
60
+ <!-- - **Training Dataset:** Unknown -->
61
+ <!-- - **Language:** Unknown -->
62
+ <!-- - **License:** Unknown -->
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
75
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ (2): Normalize()
77
+ )
78
+ ```
79
+
80
+ ## Usage
81
+
82
+ ### Direct Usage (Sentence Transformers)
83
+
84
+ First install the Sentence Transformers library:
85
+
86
+ ```bash
87
+ pip install -U sentence-transformers
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+ ```python
92
+ from sentence_transformers import SentenceTransformer
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SentenceTransformer("IshTale/MultiEccomerceEmbeddingModel")
96
+ # Run inference
97
+ sentences = [
98
+ 'antioxidant serum for skin protection',
99
+ 'Louisville Ladder 16-foot Fiberglass Extension Ladder',
100
+ 'Logitech MX Master 3S Wireless Mouse',
101
+ ]
102
+ embeddings = model.encode(sentences)
103
+ print(embeddings.shape)
104
+ # [3, 1024]
105
+
106
+ # Get the similarity scores for the embeddings
107
+ similarities = model.similarity(embeddings, embeddings)
108
+ print(similarities)
109
+ # tensor([[1.0000, 0.4999, 0.4880],
110
+ # [0.4999, 1.0000, 0.6445],
111
+ # [0.4880, 0.6445, 1.0000]])
112
+ ```
113
+
114
+ <!--
115
+ ### Direct Usage (Transformers)
116
+
117
+ <details><summary>Click to see the direct usage in Transformers</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Downstream Usage (Sentence Transformers)
124
+
125
+ You can finetune this model on your own dataset.
126
+
127
+ <details><summary>Click to expand</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ <!--
139
+ ## Bias, Risks and Limitations
140
+
141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
142
+ -->
143
+
144
+ <!--
145
+ ### Recommendations
146
+
147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
148
+ -->
149
+
150
+ ## Training Details
151
+
152
+ ### Training Dataset
153
+
154
+ #### Unnamed Dataset
155
+
156
+ * Size: 269,337 training samples
157
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | sentence_0 | sentence_1 | label |
160
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
161
+ | type | string | string | float |
162
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.2 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 24.29 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: 0.05</li><li>max: 0.99</li></ul> |
163
+ * Samples:
164
+ | sentence_0 | sentence_1 | label |
165
+ |:--------------------------------------------------------|:----------------------------------------------------|:----------------------------------|
166
+ | <code>motorized Nerf blaster with dinosaur theme</code> | <code>B. Toys by Battat Wooden Activity Cube</code> | <code>-0.07861651138439901</code> |
167
+ | <code>smart mirror with adjustable lighting</code> | <code>Pfaff Passport 2.0 Sewing Machine</code> | <code>-0.835469516572358</code> |
168
+ | <code>black tea with orange rind and spices</code> | <code>Valrhona Cocoa Powder</code> | <code>-0.13135949520666002</code> |
169
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
170
+ ```json
171
+ {
172
+ "scale": 20.0,
173
+ "similarity_fct": "pairwise_cos_sim"
174
+ }
175
+ ```
176
+
177
+ ### Training Hyperparameters
178
+ #### Non-Default Hyperparameters
179
+
180
+ - `per_device_train_batch_size`: 32
181
+ - `per_device_eval_batch_size`: 32
182
+ - `num_train_epochs`: 1
183
+ - `multi_dataset_batch_sampler`: round_robin
184
+
185
+ #### All Hyperparameters
186
+ <details><summary>Click to expand</summary>
187
+
188
+ - `overwrite_output_dir`: False
189
+ - `do_predict`: False
190
+ - `eval_strategy`: no
191
+ - `prediction_loss_only`: True
192
+ - `per_device_train_batch_size`: 32
193
+ - `per_device_eval_batch_size`: 32
194
+ - `per_gpu_train_batch_size`: None
195
+ - `per_gpu_eval_batch_size`: None
196
+ - `gradient_accumulation_steps`: 1
197
+ - `eval_accumulation_steps`: None
198
+ - `torch_empty_cache_steps`: None
199
+ - `learning_rate`: 5e-05
200
+ - `weight_decay`: 0.0
201
+ - `adam_beta1`: 0.9
202
+ - `adam_beta2`: 0.999
203
+ - `adam_epsilon`: 1e-08
204
+ - `max_grad_norm`: 1
205
+ - `num_train_epochs`: 1
206
+ - `max_steps`: -1
207
+ - `lr_scheduler_type`: linear
208
+ - `lr_scheduler_kwargs`: {}
209
+ - `warmup_ratio`: 0.0
210
+ - `warmup_steps`: 0
211
+ - `log_level`: passive
212
+ - `log_level_replica`: warning
213
+ - `log_on_each_node`: True
214
+ - `logging_nan_inf_filter`: True
215
+ - `save_safetensors`: True
216
+ - `save_on_each_node`: False
217
+ - `save_only_model`: False
218
+ - `restore_callback_states_from_checkpoint`: False
219
+ - `no_cuda`: False
220
+ - `use_cpu`: False
221
+ - `use_mps_device`: False
222
+ - `seed`: 42
223
+ - `data_seed`: None
224
+ - `jit_mode_eval`: False
225
+ - `use_ipex`: False
226
+ - `bf16`: False
227
+ - `fp16`: False
228
+ - `fp16_opt_level`: O1
229
+ - `half_precision_backend`: auto
230
+ - `bf16_full_eval`: False
231
+ - `fp16_full_eval`: False
232
+ - `tf32`: None
233
+ - `local_rank`: 0
234
+ - `ddp_backend`: None
235
+ - `tpu_num_cores`: None
236
+ - `tpu_metrics_debug`: False
237
+ - `debug`: []
238
+ - `dataloader_drop_last`: False
239
+ - `dataloader_num_workers`: 0
240
+ - `dataloader_prefetch_factor`: None
241
+ - `past_index`: -1
242
+ - `disable_tqdm`: False
243
+ - `remove_unused_columns`: True
244
+ - `label_names`: None
245
+ - `load_best_model_at_end`: False
246
+ - `ignore_data_skip`: False
247
+ - `fsdp`: []
248
+ - `fsdp_min_num_params`: 0
249
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
250
+ - `fsdp_transformer_layer_cls_to_wrap`: None
251
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
252
+ - `parallelism_config`: None
253
+ - `deepspeed`: None
254
+ - `label_smoothing_factor`: 0.0
255
+ - `optim`: adamw_torch_fused
256
+ - `optim_args`: None
257
+ - `adafactor`: False
258
+ - `group_by_length`: False
259
+ - `length_column_name`: length
260
+ - `ddp_find_unused_parameters`: None
261
+ - `ddp_bucket_cap_mb`: None
262
+ - `ddp_broadcast_buffers`: False
263
+ - `dataloader_pin_memory`: True
264
+ - `dataloader_persistent_workers`: False
265
+ - `skip_memory_metrics`: True
266
+ - `use_legacy_prediction_loop`: False
267
+ - `push_to_hub`: False
268
+ - `resume_from_checkpoint`: None
269
+ - `hub_model_id`: None
270
+ - `hub_strategy`: every_save
271
+ - `hub_private_repo`: None
272
+ - `hub_always_push`: False
273
+ - `hub_revision`: None
274
+ - `gradient_checkpointing`: False
275
+ - `gradient_checkpointing_kwargs`: None
276
+ - `include_inputs_for_metrics`: False
277
+ - `include_for_metrics`: []
278
+ - `eval_do_concat_batches`: True
279
+ - `fp16_backend`: auto
280
+ - `push_to_hub_model_id`: None
281
+ - `push_to_hub_organization`: None
282
+ - `mp_parameters`:
283
+ - `auto_find_batch_size`: False
284
+ - `full_determinism`: False
285
+ - `torchdynamo`: None
286
+ - `ray_scope`: last
287
+ - `ddp_timeout`: 1800
288
+ - `torch_compile`: False
289
+ - `torch_compile_backend`: None
290
+ - `torch_compile_mode`: None
291
+ - `include_tokens_per_second`: False
292
+ - `include_num_input_tokens_seen`: False
293
+ - `neftune_noise_alpha`: None
294
+ - `optim_target_modules`: None
295
+ - `batch_eval_metrics`: False
296
+ - `eval_on_start`: False
297
+ - `use_liger_kernel`: False
298
+ - `liger_kernel_config`: None
299
+ - `eval_use_gather_object`: False
300
+ - `average_tokens_across_devices`: False
301
+ - `prompts`: None
302
+ - `batch_sampler`: batch_sampler
303
+ - `multi_dataset_batch_sampler`: round_robin
304
+ - `router_mapping`: {}
305
+ - `learning_rate_mapping`: {}
306
+
307
+ </details>
308
+
309
+ ### Training Logs
310
+ | Epoch | Step | Training Loss |
311
+ |:------:|:----:|:-------------:|
312
+ | 0.0594 | 500 | 5.6346 |
313
+ | 0.1188 | 1000 | 5.5107 |
314
+ | 0.1782 | 1500 | 5.4706 |
315
+ | 0.2376 | 2000 | 5.4402 |
316
+ | 0.2970 | 2500 | 5.4039 |
317
+ | 0.3564 | 3000 | 5.4252 |
318
+ | 0.4158 | 3500 | 5.3693 |
319
+ | 0.4752 | 4000 | 5.3776 |
320
+ | 0.5346 | 4500 | 5.3672 |
321
+ | 0.5940 | 5000 | 5.4059 |
322
+ | 0.6534 | 5500 | 5.336 |
323
+ | 0.7128 | 6000 | 5.3467 |
324
+ | 0.7722 | 6500 | 5.3086 |
325
+
326
+
327
+ ### Framework Versions
328
+ - Python: 3.12.11
329
+ - Sentence Transformers: 5.1.0
330
+ - Transformers: 4.56.1
331
+ - PyTorch: 2.8.0+cu126
332
+ - Accelerate: 1.10.1
333
+ - Datasets: 4.0.0
334
+ - Tokenizers: 0.22.0
335
+
336
+ ## Citation
337
+
338
+ ### BibTeX
339
+
340
+ #### Sentence Transformers
341
+ ```bibtex
342
+ @inproceedings{reimers-2019-sentence-bert,
343
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
344
+ author = "Reimers, Nils and Gurevych, Iryna",
345
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
346
+ month = "11",
347
+ year = "2019",
348
+ publisher = "Association for Computational Linguistics",
349
+ url = "https://arxiv.org/abs/1908.10084",
350
+ }
351
+ ```
352
+
353
+ #### CoSENTLoss
354
+ ```bibtex
355
+ @online{kexuefm-8847,
356
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
357
+ author={Su Jianlin},
358
+ year={2022},
359
+ month={Jan},
360
+ url={https://kexue.fm/archives/8847},
361
+ }
362
+ ```
363
+
364
+ <!--
365
+ ## Glossary
366
+
367
+ *Clearly define terms in order to be accessible across audiences.*
368
+ -->
369
+
370
+ <!--
371
+ ## Model Card Authors
372
+
373
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
374
+ -->
375
+
376
+ <!--
377
+ ## Model Card Contact
378
+
379
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
380
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "dtype": "float32",
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "transformers_version": "4.56.1",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 250002
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.56.1",
6
+ "pytorch": "2.8.0+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4a3f8498624e7ed8f21043f436bdef3f0955a68004ec4bab0a0308a1adc3f83
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }