Isaac009 commited on
Commit
3f3e239
1 Parent(s): 062e1da

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.48 +/- 22.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faaf12f4310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faaf12f43a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faaf12f4430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faaf12f44c0>", "_build": "<function ActorCriticPolicy._build at 0x7faaf12f4550>", "forward": "<function ActorCriticPolicy.forward at 0x7faaf12f45e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faaf12f4670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faaf12f4700>", "_predict": "<function ActorCriticPolicy._predict at 0x7faaf12f4790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faaf12f4820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faaf12f48b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faaf12f4940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faaf12f08a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678166839883866277, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNwbT2PNh+6/u0OvK1pyzZISsI6n943tgAAgD8AAIA/ZqqsvB9tmbmmHTK8Wr+9NpoIb7o5My+2AACAPwAAgD9mth+7XFtoupaBn7pLvpC19kgdOPs8uzkAAIA/AACAP2Ymk7wU9pW6I0hdu0GtRjiOgAO7QOj2OQAAgD8AAIA/7ct8Ps9Caz8CMZk+2SXFvjJVmj4e97Q8AAAAAAAAAABmZne9FISDui33grkxAiu0sizcONUFmDgAAIA/AACAP7NPvj0g2/8+F+4Svf77M76QyL48ZMiWuwAAAAAAAAAAzVD3O7hG5LldhGk6E8UOtfNQwjqhTwu0AACAPwAAgD8AxHQ8ro/iO/5tg75j8k6+/l/AvVPMmT4AAIA/AAAAAABVk7zDwU+6jYM9OkAKkDQ044i7vTlauQAAgD8AAIA/QIyEvY/SOrpaiPy2rx2usaUeGLtpwhU2AACAPwAAgD+auLi89uRvukskULmv4eOz5F5Fumt+bjgAAIA/AACAP5pQfD0D1Ds9NtQbvtMoMr6TJiS9E9THPAAAAAAAAAAAAOhAO+xp77nP5cY6E/K7Nar1izqV/O65AACAPwAAgD8A26c9j6EavI62QbxXAdO9j3lDPS+TtT4AAIA/AACAPxr4AT0UgpS6Ikynuwzy/jZfBvO6Y81jtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi/1l92QgZECUhpRSlIwBbJRN6AOMAXSUR0CUO3+w1R+CdX2UKGgGaAloD0MIxY7GoX7VZUCUhpRSlGgVTegDaBZHQJQ/gwevIOp1fZQoaAZoCWgPQwjOF3svvltmQJSGlFKUaBVN6ANoFkdAlEF9l/Yra3V9lChoBmgJaA9DCIE+kSdJ7WFAlIaUUpRoFU3oA2gWR0CURU4JeE7GdX2UKGgGaAloD0MIoBhZMkcIYUCUhpRSlGgVTegDaBZHQJRJ5cNYr8R1fZQoaAZoCWgPQwgBp3fx/iJoQJSGlFKUaBVN6ANoFkdAlEtcUqQRw3V9lChoBmgJaA9DCIhM+RDUUWNAlIaUUpRoFU3oA2gWR0CUUW0Kqn3tdX2UKGgGaAloD0MIKQXdXlLNY0CUhpRSlGgVTegDaBZHQJRYHwd8zAN1fZQoaAZoCWgPQwirJR3lYDVmQJSGlFKUaBVN6ANoFkdAlFnmWpqASXV9lChoBmgJaA9DCEZFnE4yK2RAlIaUUpRoFU3oA2gWR0CUXGLw4KhMdX2UKGgGaAloD0MIcVga+FFHY0CUhpRSlGgVTegDaBZHQJReKL2pQ1t1fZQoaAZoCWgPQwjdI5ur5udnQJSGlFKUaBVN6ANoFkdAlGmM7EHdGnV9lChoBmgJaA9DCO4jtybd4mJAlIaUUpRoFU3oA2gWR0CUcLr6tT1kdX2UKGgGaAloD0MImx9/adFQYECUhpRSlGgVTegDaBZHQJRz04ZMtbt1fZQoaAZoCWgPQwijHTf8bu1hQJSGlFKUaBVN6ANoFkdAlHkVXiiqQ3V9lChoBmgJaA9DCPDd5o0TOmNAlIaUUpRoFU3oA2gWR0CUlZXC0ngHdX2UKGgGaAloD0MIADlhwmjoYkCUhpRSlGgVTegDaBZHQJSa2O3lS0l1fZQoaAZoCWgPQwgDzHwHP5EyQJSGlFKUaBVNBwFoFkdAlJsM5wOvuHV9lChoBmgJaA9DCB2UMNP2fGRAlIaUUpRoFU3oA2gWR0CUoA9ehPCVdX2UKGgGaAloD0MIUzwuqsWJZkCUhpRSlGgVTegDaBZHQJSiXXYlIEt1fZQoaAZoCWgPQwg0vi8u1eFlQJSGlFKUaBVN6ANoFkdAlKZlolD4QHV9lChoBmgJaA9DCMRfkzXqzGdAlIaUUpRoFU3oA2gWR0CUq1XS0BwNdX2UKGgGaAloD0MI/gsEATJUZUCUhpRSlGgVTegDaBZHQJSs9zcRDkV1fZQoaAZoCWgPQwjYYyKlWeVlQJSGlFKUaBVN6ANoFkdAlLH0ojOcD3V9lChoBmgJaA9DCFVP5h/9umRAlIaUUpRoFU3oA2gWR0CUt1roGIKudX2UKGgGaAloD0MIv/OLEnT/ZkCUhpRSlGgVTegDaBZHQJS4y4NI9Tx1fZQoaAZoCWgPQwipFDsahyhnQJSGlFKUaBVN6ANoFkdAlLrFpPAO8XV9lChoBmgJaA9DCPVm1HyVQGJAlIaUUpRoFU3oA2gWR0CUvEKJVKf4dX2UKGgGaAloD0MIfnIUIIqIYkCUhpRSlGgVTegDaBZHQJTG+cd5prV1fZQoaAZoCWgPQwjL1voi4QZwQJSGlFKUaBVNUQFoFkdAlNQNJrcj7nV9lChoBmgJaA9DCF6EKcqlQmVAlIaUUpRoFU3oA2gWR0CU1iOjZcs2dX2UKGgGaAloD0MIuw1qvzUmYkCUhpRSlGgVTegDaBZHQJTeqKiwjdJ1fZQoaAZoCWgPQwgOorWizaxgQJSGlFKUaBVN6ANoFkdAlPkNBWxQi3V9lChoBmgJaA9DCIsbt5ifaWFAlIaUUpRoFU3oA2gWR0CU/RdIXj2jdX2UKGgGaAloD0MI5/7qcd9BY0CUhpRSlGgVTegDaBZHQJT9SWC2+f11fZQoaAZoCWgPQwgzwXCu4cFoQJSGlFKUaBVN6ANoFkdAlQDW0/nnuHV9lChoBmgJaA9DCNyDEJAvfWhAlIaUUpRoFU3oA2gWR0CVAuyOJcgRdX2UKGgGaAloD0MIZ2DkZU1nYUCUhpRSlGgVTegDaBZHQJUG2k56t1Z1fZQoaAZoCWgPQwg4FakwtqNmQJSGlFKUaBVN6ANoFkdAlQ1+M6zVt3V9lChoBmgJaA9DCKFpiZVR0GVAlIaUUpRoFU3oA2gWR0CVEAsvqTr3dX2UKGgGaAloD0MIIhgHlw6UZUCUhpRSlGgVTegDaBZHQJUXE8PnSv11fZQoaAZoCWgPQwjOcAM+v7xiQJSGlFKUaBVN6ANoFkdAlR237UG3WnV9lChoBmgJaA9DCInRcwvdfmNAlIaUUpRoFU3oA2gWR0CVINLeQ+2WdX2UKGgGaAloD0MIyqfHtgylZUCUhpRSlGgVTegDaBZHQJUiKJgsshB1fZQoaAZoCWgPQwgexM4UOp8vQJSGlFKUaBVL+GgWR0CVIkRyfcvedX2UKGgGaAloD0MIQ+bKoFoFZECUhpRSlGgVTegDaBZHQJUsCOgg5ip1fZQoaAZoCWgPQwjSHFn5ZYJiQJSGlFKUaBVN6ANoFkdAlTU+Gj9GZ3V9lChoBmgJaA9DCD52FyipLmRAlIaUUpRoFU3oA2gWR0CVNoztkWhzdX2UKGgGaAloD0MIeTvCacEPZ0CUhpRSlGgVTegDaBZHQJU8Vg/keZJ1fZQoaAZoCWgPQwiy9ne2R+ZlQJSGlFKUaBVN6ANoFkdAlVyqhlDneXV9lChoBmgJaA9DCIJUih2NJ19AlIaUUpRoFU3oA2gWR0CVYHMjNY8udX2UKGgGaAloD0MIm1lLAWl/Y0CUhpRSlGgVTegDaBZHQJVgow8GLUF1fZQoaAZoCWgPQwhqvHSTGJVuQJSGlFKUaBVNMAJoFkdAlWMEHD766HV9lChoBmgJaA9DCEfoZ+p1rmVAlIaUUpRoFU3oA2gWR0CVY/ke6qbSdX2UKGgGaAloD0MI5xn7ko03YECUhpRSlGgVTegDaBZHQJVl4e8wpON1fZQoaAZoCWgPQwg+ITtvY9dmQJSGlFKUaBVN6ANoFkdAlWnZZB9kSXV9lChoBmgJaA9DCHHHm/wW02NAlIaUUpRoFU3oA2gWR0CVb+4M4LkTdX2UKGgGaAloD0MINloO9NCKYUCUhpRSlGgVTegDaBZHQJV0+rWAf+11fZQoaAZoCWgPQwgiiskbYMlhQJSGlFKUaBVN6ANoFkdAlXotTgl4T3V9lChoBmgJaA9DCPQWD++5zGNAlIaUUpRoFU3oA2gWR0CVfWUNayKOdX2UKGgGaAloD0MIG53zU5xcYkCUhpRSlGgVTegDaBZHQJV+ta0QbuN1fZQoaAZoCWgPQwitMeiE0L9MQJSGlFKUaBVL8GgWR0CVhh/nW8RMdX2UKGgGaAloD0MI2IAIceXIX0CUhpRSlGgVTegDaBZHQJWL1u+AVfx1fZQoaAZoCWgPQwgNiXssfSNlQJSGlFKUaBVN6ANoFkdAlZgScXm/33V9lChoBmgJaA9DCIRHG0esCmhAlIaUUpRoFU3oA2gWR0CVmVL0jC53dX2UKGgGaAloD0MILSXLSaiJZECUhpRSlGgVTegDaBZHQJWe34/NZ/11fZQoaAZoCWgPQwg6svLL4F9iQJSGlFKUaBVN6ANoFkdAlaSlpj+aSnV9lChoBmgJaA9DCIZWJ2conWBAlIaUUpRoFU3oA2gWR0CVvSEGZ/kOdX2UKGgGaAloD0MI6V+SyhRZZUCUhpRSlGgVTegDaBZHQJW9UvrWy1N1fZQoaAZoCWgPQwgG19zRf85kQJSGlFKUaBVN6ANoFkdAlcBHtWuHOHV9lChoBmgJaA9DCKmfNxWppGhAlIaUUpRoFU3oA2gWR0CVwbjUNKAbdX2UKGgGaAloD0MI1T+IZMhCYECUhpRSlGgVTegDaBZHQJXEpJ8OTaF1fZQoaAZoCWgPQwjQJ/Ik6QhnQJSGlFKUaBVN6ANoFkdAlcqaguh9LHV9lChoBmgJaA9DCIJ1HD9UuGFAlIaUUpRoFU3oA2gWR0CV1OiobXHzdX2UKGgGaAloD0MIkGrY74lJY0CUhpRSlGgVTegDaBZHQJXhTtlZowp1fZQoaAZoCWgPQwiUwrzHGYNlQJSGlFKUaBVN6ANoFkdAleWcoYvWYnV9lChoBmgJaA9DCMfVyK60RmVAlIaUUpRoFU3oA2gWR0CV538vEjxDdX2UKGgGaAloD0MIFNGvrR+kZUCUhpRSlGgVTegDaBZHQJXvlv/BFd91fZQoaAZoCWgPQwjsvfiiPYhfQJSGlFKUaBVN6ANoFkdAlfT74vexfXV9lChoBmgJaA9DCGvz/6qjzWRAlIaUUpRoFU3oA2gWR0CWAQPXkHUudX2UKGgGaAloD0MI8Ui8PB1NZUCUhpRSlGgVTegDaBZHQJYDDj3mFJx1fZQoaAZoCWgPQwgH7GrylENRQJSGlFKUaBVL1mgWR0CWA170nPVvdX2UKGgGaAloD0MIQbtDigFJZECUhpRSlGgVTegDaBZHQJYLMYCQtBh1fZQoaAZoCWgPQwiMEvQX+n5iQJSGlFKUaBVN6ANoFkdAlhM93GGVRnV9lChoBmgJaA9DCFG/C1uzr2VAlIaUUpRoFU3oA2gWR0CWKuTufEn9dX2UKGgGaAloD0MIsMvwn266ZECUhpRSlGgVTegDaBZHQJYrFXo1UER1fZQoaAZoCWgPQwjAJJUp5hVhQJSGlFKUaBVN6ANoFkdAli2D5GjKxXV9lChoBmgJaA9DCDy/KEF/U2RAlIaUUpRoFU3oA2gWR0CWLntvn8sMdX2UKGgGaAloD0MIu9IyUu8DYECUhpRSlGgVTegDaBZHQJYwZKdxyXF1fZQoaAZoCWgPQwg01ZP5x9ZiQJSGlFKUaBVN6ANoFkdAljRMSf16FHV9lChoBmgJaA9DCBjPoKF/eWZAlIaUUpRoFU3oA2gWR0CWOmFWXC0odX2UKGgGaAloD0MIAYkmUMS+ZkCUhpRSlGgVTegDaBZHQJZIXrIHTql1fZQoaAZoCWgPQwg2ct2UctRgQJSGlFKUaBVN6ANoFkdAlk1mfTTfBXV9lChoBmgJaA9DCDpXlBKCzmRAlIaUUpRoFU3oA2gWR0CWT4Heaa1DdX2UKGgGaAloD0MImUf+YOAIYkCUhpRSlGgVTegDaBZHQJZa6u1WsBB1fZQoaAZoCWgPQwj4iJgSyXplQJSGlFKUaBVN6ANoFkdAlmPZFgDzRXV9lChoBmgJaA9DCAfsavKUT2NAlIaUUpRoFU3oA2gWR0CWZTR3NcGDdX2UKGgGaAloD0MIUl+Wdmo6ZUCUhpRSlGgVTegDaBZHQJZlXObAk9l1fZQoaAZoCWgPQwja/wBrVa9nQJSGlFKUaBVN6ANoFkdAlmpxzNliB3V9lChoBmgJaA9DCIL+Qo8Y5mRAlIaUUpRoFU3oA2gWR0CWb6RuCPIXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunarlander-v2-ppo-agent.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85e94c549931475778376dc4acd7e5c06f819354c637d1892522a8ec10b2be9d
3
+ size 147420
lunarlander-v2-ppo-agent/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunarlander-v2-ppo-agent/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7faaf12f4310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faaf12f43a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faaf12f4430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faaf12f44c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7faaf12f4550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7faaf12f45e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faaf12f4670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faaf12f4700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7faaf12f4790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faaf12f4820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faaf12f48b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faaf12f4940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7faaf12f08a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678166839883866277,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNwbT2PNh+6/u0OvK1pyzZISsI6n943tgAAgD8AAIA/ZqqsvB9tmbmmHTK8Wr+9NpoIb7o5My+2AACAPwAAgD9mth+7XFtoupaBn7pLvpC19kgdOPs8uzkAAIA/AACAP2Ymk7wU9pW6I0hdu0GtRjiOgAO7QOj2OQAAgD8AAIA/7ct8Ps9Caz8CMZk+2SXFvjJVmj4e97Q8AAAAAAAAAABmZne9FISDui33grkxAiu0sizcONUFmDgAAIA/AACAP7NPvj0g2/8+F+4Svf77M76QyL48ZMiWuwAAAAAAAAAAzVD3O7hG5LldhGk6E8UOtfNQwjqhTwu0AACAPwAAgD8AxHQ8ro/iO/5tg75j8k6+/l/AvVPMmT4AAIA/AAAAAABVk7zDwU+6jYM9OkAKkDQ044i7vTlauQAAgD8AAIA/QIyEvY/SOrpaiPy2rx2usaUeGLtpwhU2AACAPwAAgD+auLi89uRvukskULmv4eOz5F5Fumt+bjgAAIA/AACAP5pQfD0D1Ds9NtQbvtMoMr6TJiS9E9THPAAAAAAAAAAAAOhAO+xp77nP5cY6E/K7Nar1izqV/O65AACAPwAAgD8A26c9j6EavI62QbxXAdO9j3lDPS+TtT4AAIA/AACAPxr4AT0UgpS6Ikynuwzy/jZfBvO6Y81jtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi/1l92QgZECUhpRSlIwBbJRN6AOMAXSUR0CUO3+w1R+CdX2UKGgGaAloD0MIxY7GoX7VZUCUhpRSlGgVTegDaBZHQJQ/gwevIOp1fZQoaAZoCWgPQwjOF3svvltmQJSGlFKUaBVN6ANoFkdAlEF9l/Yra3V9lChoBmgJaA9DCIE+kSdJ7WFAlIaUUpRoFU3oA2gWR0CURU4JeE7GdX2UKGgGaAloD0MIoBhZMkcIYUCUhpRSlGgVTegDaBZHQJRJ5cNYr8R1fZQoaAZoCWgPQwgBp3fx/iJoQJSGlFKUaBVN6ANoFkdAlEtcUqQRw3V9lChoBmgJaA9DCIhM+RDUUWNAlIaUUpRoFU3oA2gWR0CUUW0Kqn3tdX2UKGgGaAloD0MIKQXdXlLNY0CUhpRSlGgVTegDaBZHQJRYHwd8zAN1fZQoaAZoCWgPQwirJR3lYDVmQJSGlFKUaBVN6ANoFkdAlFnmWpqASXV9lChoBmgJaA9DCEZFnE4yK2RAlIaUUpRoFU3oA2gWR0CUXGLw4KhMdX2UKGgGaAloD0MIcVga+FFHY0CUhpRSlGgVTegDaBZHQJReKL2pQ1t1fZQoaAZoCWgPQwjdI5ur5udnQJSGlFKUaBVN6ANoFkdAlGmM7EHdGnV9lChoBmgJaA9DCO4jtybd4mJAlIaUUpRoFU3oA2gWR0CUcLr6tT1kdX2UKGgGaAloD0MImx9/adFQYECUhpRSlGgVTegDaBZHQJRz04ZMtbt1fZQoaAZoCWgPQwijHTf8bu1hQJSGlFKUaBVN6ANoFkdAlHkVXiiqQ3V9lChoBmgJaA9DCPDd5o0TOmNAlIaUUpRoFU3oA2gWR0CUlZXC0ngHdX2UKGgGaAloD0MIADlhwmjoYkCUhpRSlGgVTegDaBZHQJSa2O3lS0l1fZQoaAZoCWgPQwgDzHwHP5EyQJSGlFKUaBVNBwFoFkdAlJsM5wOvuHV9lChoBmgJaA9DCB2UMNP2fGRAlIaUUpRoFU3oA2gWR0CUoA9ehPCVdX2UKGgGaAloD0MIUzwuqsWJZkCUhpRSlGgVTegDaBZHQJSiXXYlIEt1fZQoaAZoCWgPQwg0vi8u1eFlQJSGlFKUaBVN6ANoFkdAlKZlolD4QHV9lChoBmgJaA9DCMRfkzXqzGdAlIaUUpRoFU3oA2gWR0CUq1XS0BwNdX2UKGgGaAloD0MI/gsEATJUZUCUhpRSlGgVTegDaBZHQJSs9zcRDkV1fZQoaAZoCWgPQwjYYyKlWeVlQJSGlFKUaBVN6ANoFkdAlLH0ojOcD3V9lChoBmgJaA9DCFVP5h/9umRAlIaUUpRoFU3oA2gWR0CUt1roGIKudX2UKGgGaAloD0MIv/OLEnT/ZkCUhpRSlGgVTegDaBZHQJS4y4NI9Tx1fZQoaAZoCWgPQwipFDsahyhnQJSGlFKUaBVN6ANoFkdAlLrFpPAO8XV9lChoBmgJaA9DCPVm1HyVQGJAlIaUUpRoFU3oA2gWR0CUvEKJVKf4dX2UKGgGaAloD0MIfnIUIIqIYkCUhpRSlGgVTegDaBZHQJTG+cd5prV1fZQoaAZoCWgPQwjL1voi4QZwQJSGlFKUaBVNUQFoFkdAlNQNJrcj7nV9lChoBmgJaA9DCF6EKcqlQmVAlIaUUpRoFU3oA2gWR0CU1iOjZcs2dX2UKGgGaAloD0MIuw1qvzUmYkCUhpRSlGgVTegDaBZHQJTeqKiwjdJ1fZQoaAZoCWgPQwgOorWizaxgQJSGlFKUaBVN6ANoFkdAlPkNBWxQi3V9lChoBmgJaA9DCIsbt5ifaWFAlIaUUpRoFU3oA2gWR0CU/RdIXj2jdX2UKGgGaAloD0MI5/7qcd9BY0CUhpRSlGgVTegDaBZHQJT9SWC2+f11fZQoaAZoCWgPQwgzwXCu4cFoQJSGlFKUaBVN6ANoFkdAlQDW0/nnuHV9lChoBmgJaA9DCNyDEJAvfWhAlIaUUpRoFU3oA2gWR0CVAuyOJcgRdX2UKGgGaAloD0MIZ2DkZU1nYUCUhpRSlGgVTegDaBZHQJUG2k56t1Z1fZQoaAZoCWgPQwg4FakwtqNmQJSGlFKUaBVN6ANoFkdAlQ1+M6zVt3V9lChoBmgJaA9DCKFpiZVR0GVAlIaUUpRoFU3oA2gWR0CVEAsvqTr3dX2UKGgGaAloD0MIIhgHlw6UZUCUhpRSlGgVTegDaBZHQJUXE8PnSv11fZQoaAZoCWgPQwjOcAM+v7xiQJSGlFKUaBVN6ANoFkdAlR237UG3WnV9lChoBmgJaA9DCInRcwvdfmNAlIaUUpRoFU3oA2gWR0CVINLeQ+2WdX2UKGgGaAloD0MIyqfHtgylZUCUhpRSlGgVTegDaBZHQJUiKJgsshB1fZQoaAZoCWgPQwgexM4UOp8vQJSGlFKUaBVL+GgWR0CVIkRyfcvedX2UKGgGaAloD0MIQ+bKoFoFZECUhpRSlGgVTegDaBZHQJUsCOgg5ip1fZQoaAZoCWgPQwjSHFn5ZYJiQJSGlFKUaBVN6ANoFkdAlTU+Gj9GZ3V9lChoBmgJaA9DCD52FyipLmRAlIaUUpRoFU3oA2gWR0CVNoztkWhzdX2UKGgGaAloD0MIeTvCacEPZ0CUhpRSlGgVTegDaBZHQJU8Vg/keZJ1fZQoaAZoCWgPQwiy9ne2R+ZlQJSGlFKUaBVN6ANoFkdAlVyqhlDneXV9lChoBmgJaA9DCIJUih2NJ19AlIaUUpRoFU3oA2gWR0CVYHMjNY8udX2UKGgGaAloD0MIm1lLAWl/Y0CUhpRSlGgVTegDaBZHQJVgow8GLUF1fZQoaAZoCWgPQwhqvHSTGJVuQJSGlFKUaBVNMAJoFkdAlWMEHD766HV9lChoBmgJaA9DCEfoZ+p1rmVAlIaUUpRoFU3oA2gWR0CVY/ke6qbSdX2UKGgGaAloD0MI5xn7ko03YECUhpRSlGgVTegDaBZHQJVl4e8wpON1fZQoaAZoCWgPQwg+ITtvY9dmQJSGlFKUaBVN6ANoFkdAlWnZZB9kSXV9lChoBmgJaA9DCHHHm/wW02NAlIaUUpRoFU3oA2gWR0CVb+4M4LkTdX2UKGgGaAloD0MINloO9NCKYUCUhpRSlGgVTegDaBZHQJV0+rWAf+11fZQoaAZoCWgPQwgiiskbYMlhQJSGlFKUaBVN6ANoFkdAlXotTgl4T3V9lChoBmgJaA9DCPQWD++5zGNAlIaUUpRoFU3oA2gWR0CVfWUNayKOdX2UKGgGaAloD0MIG53zU5xcYkCUhpRSlGgVTegDaBZHQJV+ta0QbuN1fZQoaAZoCWgPQwitMeiE0L9MQJSGlFKUaBVL8GgWR0CVhh/nW8RMdX2UKGgGaAloD0MI2IAIceXIX0CUhpRSlGgVTegDaBZHQJWL1u+AVfx1fZQoaAZoCWgPQwgNiXssfSNlQJSGlFKUaBVN6ANoFkdAlZgScXm/33V9lChoBmgJaA9DCIRHG0esCmhAlIaUUpRoFU3oA2gWR0CVmVL0jC53dX2UKGgGaAloD0MILSXLSaiJZECUhpRSlGgVTegDaBZHQJWe34/NZ/11fZQoaAZoCWgPQwg6svLL4F9iQJSGlFKUaBVN6ANoFkdAlaSlpj+aSnV9lChoBmgJaA9DCIZWJ2conWBAlIaUUpRoFU3oA2gWR0CVvSEGZ/kOdX2UKGgGaAloD0MI6V+SyhRZZUCUhpRSlGgVTegDaBZHQJW9UvrWy1N1fZQoaAZoCWgPQwgG19zRf85kQJSGlFKUaBVN6ANoFkdAlcBHtWuHOHV9lChoBmgJaA9DCKmfNxWppGhAlIaUUpRoFU3oA2gWR0CVwbjUNKAbdX2UKGgGaAloD0MI1T+IZMhCYECUhpRSlGgVTegDaBZHQJXEpJ8OTaF1fZQoaAZoCWgPQwjQJ/Ik6QhnQJSGlFKUaBVN6ANoFkdAlcqaguh9LHV9lChoBmgJaA9DCIJ1HD9UuGFAlIaUUpRoFU3oA2gWR0CV1OiobXHzdX2UKGgGaAloD0MIkGrY74lJY0CUhpRSlGgVTegDaBZHQJXhTtlZowp1fZQoaAZoCWgPQwiUwrzHGYNlQJSGlFKUaBVN6ANoFkdAleWcoYvWYnV9lChoBmgJaA9DCMfVyK60RmVAlIaUUpRoFU3oA2gWR0CV538vEjxDdX2UKGgGaAloD0MIFNGvrR+kZUCUhpRSlGgVTegDaBZHQJXvlv/BFd91fZQoaAZoCWgPQwjsvfiiPYhfQJSGlFKUaBVN6ANoFkdAlfT74vexfXV9lChoBmgJaA9DCGvz/6qjzWRAlIaUUpRoFU3oA2gWR0CWAQPXkHUudX2UKGgGaAloD0MI8Ui8PB1NZUCUhpRSlGgVTegDaBZHQJYDDj3mFJx1fZQoaAZoCWgPQwgH7GrylENRQJSGlFKUaBVL1mgWR0CWA170nPVvdX2UKGgGaAloD0MIQbtDigFJZECUhpRSlGgVTegDaBZHQJYLMYCQtBh1fZQoaAZoCWgPQwiMEvQX+n5iQJSGlFKUaBVN6ANoFkdAlhM93GGVRnV9lChoBmgJaA9DCFG/C1uzr2VAlIaUUpRoFU3oA2gWR0CWKuTufEn9dX2UKGgGaAloD0MIsMvwn266ZECUhpRSlGgVTegDaBZHQJYrFXo1UER1fZQoaAZoCWgPQwjAJJUp5hVhQJSGlFKUaBVN6ANoFkdAli2D5GjKxXV9lChoBmgJaA9DCDy/KEF/U2RAlIaUUpRoFU3oA2gWR0CWLntvn8sMdX2UKGgGaAloD0MIu9IyUu8DYECUhpRSlGgVTegDaBZHQJYwZKdxyXF1fZQoaAZoCWgPQwg01ZP5x9ZiQJSGlFKUaBVN6ANoFkdAljRMSf16FHV9lChoBmgJaA9DCBjPoKF/eWZAlIaUUpRoFU3oA2gWR0CWOmFWXC0odX2UKGgGaAloD0MIAYkmUMS+ZkCUhpRSlGgVTegDaBZHQJZIXrIHTql1fZQoaAZoCWgPQwg2ct2UctRgQJSGlFKUaBVN6ANoFkdAlk1mfTTfBXV9lChoBmgJaA9DCDpXlBKCzmRAlIaUUpRoFU3oA2gWR0CWT4Heaa1DdX2UKGgGaAloD0MImUf+YOAIYkCUhpRSlGgVTegDaBZHQJZa6u1WsBB1fZQoaAZoCWgPQwj4iJgSyXplQJSGlFKUaBVN6ANoFkdAlmPZFgDzRXV9lChoBmgJaA9DCAfsavKUT2NAlIaUUpRoFU3oA2gWR0CWZTR3NcGDdX2UKGgGaAloD0MIUl+Wdmo6ZUCUhpRSlGgVTegDaBZHQJZlXObAk9l1fZQoaAZoCWgPQwja/wBrVa9nQJSGlFKUaBVN6ANoFkdAlmpxzNliB3V9lChoBmgJaA9DCIL+Qo8Y5mRAlIaUUpRoFU3oA2gWR0CWb6RuCPIXdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunarlander-v2-ppo-agent/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9ea65b50ee23c7946faeb3ef8fa760386221251ea440ed4dbead732569f5431
3
+ size 87929
lunarlander-v2-ppo-agent/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d5c8fe02f58be71b7d5ad468ddfee62f05f5cfa1dd333624d3505a5ed47b97f
3
+ size 43393
lunarlander-v2-ppo-agent/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunarlander-v2-ppo-agent/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (247 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.4849648973523, "std_reward": 22.22688586495312, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T06:18:57.275463"}