English
jinjieyuan's picture
Upload model
1960aa4
raw
history blame
18 kB
{
"best_metric": null,
"best_model_checkpoint": null,
"best_supernet_model_checkpoint": null,
"epoch": 16.0,
"global_step": 1248,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 1.0,
"eval_accuracy": 0.5126353790613718,
"eval_loss": 0.6907398700714111,
"eval_runtime": 0.3187,
"eval_samples_per_second": 869.169,
"eval_steps_per_second": 9.413,
"step": 78
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 1.0,
"eval_accuracy": 0.631768953068592,
"eval_loss": 0.6698081493377686,
"eval_runtime": 0.3205,
"eval_samples_per_second": 864.196,
"eval_steps_per_second": 9.36,
"step": 78
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 2.0,
"eval_accuracy": 0.5884476534296029,
"eval_loss": 0.7006412744522095,
"eval_runtime": 0.313,
"eval_samples_per_second": 884.931,
"eval_steps_per_second": 9.584,
"step": 156
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 2.0,
"eval_accuracy": 0.6714801444043321,
"eval_loss": 0.6682543158531189,
"eval_runtime": 0.3443,
"eval_samples_per_second": 804.534,
"eval_steps_per_second": 8.713,
"step": 156
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 3.0,
"eval_accuracy": 0.5956678700361011,
"eval_loss": 0.7282483577728271,
"eval_runtime": 0.271,
"eval_samples_per_second": 1022.293,
"eval_steps_per_second": 11.072,
"step": 234
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 3.0,
"eval_accuracy": 0.7003610108303249,
"eval_loss": 0.7188943028450012,
"eval_runtime": 0.3007,
"eval_samples_per_second": 921.259,
"eval_steps_per_second": 9.978,
"step": 234
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 4.0,
"eval_accuracy": 0.6534296028880866,
"eval_loss": 0.7194212675094604,
"eval_runtime": 0.3156,
"eval_samples_per_second": 877.769,
"eval_steps_per_second": 9.507,
"step": 312
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 4.0,
"eval_accuracy": 0.7003610108303249,
"eval_loss": 0.7804971933364868,
"eval_runtime": 0.3328,
"eval_samples_per_second": 832.291,
"eval_steps_per_second": 9.014,
"step": 312
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 5.0,
"eval_accuracy": 0.6353790613718412,
"eval_loss": 0.8791369199752808,
"eval_runtime": 0.3055,
"eval_samples_per_second": 906.57,
"eval_steps_per_second": 9.818,
"step": 390
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 5.0,
"eval_accuracy": 0.7075812274368231,
"eval_loss": 0.8327999711036682,
"eval_runtime": 0.3457,
"eval_samples_per_second": 801.306,
"eval_steps_per_second": 8.678,
"step": 390
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 6.0,
"eval_accuracy": 0.6173285198555957,
"eval_loss": 1.0036966800689697,
"eval_runtime": 0.366,
"eval_samples_per_second": 756.88,
"eval_steps_per_second": 8.197,
"step": 468
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 6.0,
"eval_accuracy": 0.6895306859205776,
"eval_loss": 0.8701478242874146,
"eval_runtime": 0.4386,
"eval_samples_per_second": 631.518,
"eval_steps_per_second": 6.84,
"step": 468
},
{
"compression_loss": 0.0,
"epoch": 6.41,
"learning_rate": 1.3285813580973207e-05,
"loss": 0.5371,
"step": 500
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 7.0,
"eval_accuracy": 0.6245487364620939,
"eval_loss": 0.9121482372283936,
"eval_runtime": 0.3365,
"eval_samples_per_second": 823.293,
"eval_steps_per_second": 8.917,
"step": 546
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 7.0,
"eval_accuracy": 0.6859205776173285,
"eval_loss": 0.8219799995422363,
"eval_runtime": 0.458,
"eval_samples_per_second": 604.827,
"eval_steps_per_second": 6.55,
"step": 546
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 8.0,
"eval_accuracy": 0.6245487364620939,
"eval_loss": 1.009196162223816,
"eval_runtime": 0.323,
"eval_samples_per_second": 857.674,
"eval_steps_per_second": 9.289,
"step": 624
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 8.0,
"eval_accuracy": 0.6823104693140795,
"eval_loss": 0.8340579867362976,
"eval_runtime": 0.4417,
"eval_samples_per_second": 627.172,
"eval_steps_per_second": 6.792,
"step": 624
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 9.0,
"eval_accuracy": 0.6425992779783394,
"eval_loss": 0.9687350392341614,
"eval_runtime": 0.2576,
"eval_samples_per_second": 1075.361,
"eval_steps_per_second": 11.647,
"step": 702
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 9.0,
"eval_accuracy": 0.6642599277978339,
"eval_loss": 0.8537887334823608,
"eval_runtime": 0.4396,
"eval_samples_per_second": 630.096,
"eval_steps_per_second": 6.824,
"step": 702
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 10.0,
"eval_accuracy": 0.6353790613718412,
"eval_loss": 1.0111019611358643,
"eval_runtime": 0.3165,
"eval_samples_per_second": 875.142,
"eval_steps_per_second": 9.478,
"step": 780
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 10.0,
"eval_accuracy": 0.6967509025270758,
"eval_loss": 0.8117498159408569,
"eval_runtime": 0.4348,
"eval_samples_per_second": 637.033,
"eval_steps_per_second": 6.899,
"step": 780
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 11.0,
"eval_accuracy": 0.6498194945848376,
"eval_loss": 0.9616022706031799,
"eval_runtime": 0.3223,
"eval_samples_per_second": 859.427,
"eval_steps_per_second": 9.308,
"step": 858
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 11.0,
"eval_accuracy": 0.6895306859205776,
"eval_loss": 0.8113434910774231,
"eval_runtime": 0.4354,
"eval_samples_per_second": 636.179,
"eval_steps_per_second": 6.89,
"step": 858
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 12.0,
"eval_accuracy": 0.6462093862815884,
"eval_loss": 0.9934073090553284,
"eval_runtime": 0.3202,
"eval_samples_per_second": 865.131,
"eval_steps_per_second": 9.37,
"step": 936
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 12.0,
"eval_accuracy": 0.6895306859205776,
"eval_loss": 0.8179090023040771,
"eval_runtime": 0.4603,
"eval_samples_per_second": 601.726,
"eval_steps_per_second": 6.517,
"step": 936
},
{
"compression_loss": 0.0,
"epoch": 12.82,
"learning_rate": 2.1281651939094996e-06,
"loss": 0.1174,
"step": 1000
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 13.0,
"eval_accuracy": 0.631768953068592,
"eval_loss": 1.009687900543213,
"eval_runtime": 0.3338,
"eval_samples_per_second": 829.86,
"eval_steps_per_second": 8.988,
"step": 1014
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 13.0,
"eval_accuracy": 0.7003610108303249,
"eval_loss": 0.8190819025039673,
"eval_runtime": 0.4638,
"eval_samples_per_second": 597.268,
"eval_steps_per_second": 6.469,
"step": 1014
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 14.0,
"eval_accuracy": 0.6462093862815884,
"eval_loss": 1.0018943548202515,
"eval_runtime": 0.2723,
"eval_samples_per_second": 1017.137,
"eval_steps_per_second": 11.016,
"step": 1092
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 14.0,
"eval_accuracy": 0.7003610108303249,
"eval_loss": 0.8157313466072083,
"eval_runtime": 0.4417,
"eval_samples_per_second": 627.137,
"eval_steps_per_second": 6.792,
"step": 1092
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 15.0,
"eval_accuracy": 0.631768953068592,
"eval_loss": 1.012693166732788,
"eval_runtime": 0.3213,
"eval_samples_per_second": 862.201,
"eval_steps_per_second": 9.338,
"step": 1170
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 15.0,
"eval_accuracy": 0.6895306859205776,
"eval_loss": 0.8178156614303589,
"eval_runtime": 0.4461,
"eval_samples_per_second": 620.871,
"eval_steps_per_second": 6.724,
"step": 1170
},
{
"Minimum SubNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 576, 1: 448, 2: 576, 3: 768, 4: 704, 5: 704, 6: 768, 7: 576, 8: 704, 9: 704, 10: 512, 11: 640, 12: 608, 13: 571, 14: 589, 15: 542, 16: 576, 17: 589, 18: 568, 19: 537, 20: 562, 21: 453, 22: 376, 23: 147})])",
"epoch": 16.0,
"eval_accuracy": 0.6462093862815884,
"eval_loss": 1.009476661682129,
"eval_runtime": 0.3271,
"eval_samples_per_second": 846.951,
"eval_steps_per_second": 9.173,
"step": 1248
},
{
"SuperNet": "OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])",
"epoch": 16.0,
"eval_accuracy": 0.6895306859205776,
"eval_loss": 0.8178343772888184,
"eval_runtime": 0.4589,
"eval_samples_per_second": 603.661,
"eval_steps_per_second": 6.538,
"step": 1248
},
{
"epoch": 16.0,
"step": 1248,
"total_flos": 2620586111385600.0,
"train_loss": 0.27760597070058185,
"train_runtime": 2463.0354,
"train_samples_per_second": 16.175,
"train_steps_per_second": 0.507
}
],
"max_steps": 1248,
"min_subnet_acc": null,
"min_subnet_best_acc": null,
"num_train_epochs": 16,
"supernet_acc": null,
"supernet_best_acc": null,
"total_flos": 2620586111385600.0,
"trial_name": null,
"trial_params": null
}