Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- OLMo_Bitnet_1B/.gitattributes +35 -0
- OLMo_Bitnet_1B/README.md +38 -0
- OLMo_Bitnet_1B/__init__.py +0 -0
- OLMo_Bitnet_1B/__pycache__/__init__.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/__init__.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/__init__.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/aliases.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/aliases.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/aliases.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/beam_search.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/beam_search.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/beam_search.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/config.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/config.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/config.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/configuration_olmo.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/configuration_olmo.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/configuration_olmo.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/exceptions.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/exceptions.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/exceptions.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/initialization.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/initialization.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/initialization.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/model.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/model.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/model.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/modeling_olmo.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/modeling_olmo.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/modeling_olmo.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/optim.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/optim.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/optim.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/safetensors_util.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/safetensors_util.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/safetensors_util.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/torch_util.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/torch_util.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/torch_util.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/util.cpython-310.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/util.cpython-311.pyc +0 -0
- OLMo_Bitnet_1B/__pycache__/util.cpython-312.pyc +0 -0
- OLMo_Bitnet_1B/aliases.py +7 -0
- OLMo_Bitnet_1B/beam_search.py +1078 -0
- OLMo_Bitnet_1B/checkpoint.py +1671 -0
- OLMo_Bitnet_1B/config.json +50 -0
- OLMo_Bitnet_1B/config.py +1106 -0
- OLMo_Bitnet_1B/configuration_olmo.py +52 -0
- OLMo_Bitnet_1B/exceptions.py +50 -0
- OLMo_Bitnet_1B/initialization.py +95 -0
OLMo_Bitnet_1B/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
OLMo_Bitnet_1B/README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- allenai/dolma
|
5 |
+
---
|
6 |
+
# OLMo-Bitnet-1B
|
7 |
+
|
8 |
+
OLMo-Bitnet-1B is a 1B parameter model trained using the method described in [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/abs/2402.17764).
|
9 |
+
|
10 |
+
It was trained on the first 60B tokens of the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset, so it is merely a research proof-of-concept to test out the methodolgy.
|
11 |
+
|
12 |
+
A separate training run was run with the exact same hyperparameters, but using standard fp16 weights.
|
13 |
+
The comparison can be found in [this wandb report](https://api.wandb.ai/links/emozilla/evltqiv7).
|
14 |
+
|
15 |
+
|
16 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/NAw-hyWJl5ihVsAPqz3Xe.png)
|
17 |
+
|
18 |
+
Sample inference code
|
19 |
+
|
20 |
+
```sh
|
21 |
+
pip install ai2-olmo
|
22 |
+
```
|
23 |
+
|
24 |
+
```python
|
25 |
+
import torch
|
26 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextStreamer
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("NousResearch/OLMo-Bitnet-1B")
|
29 |
+
model = AutoModelForCausalLM.from_pretrained("NousResearch/OLMo-Bitnet-1B",
|
30 |
+
torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
31 |
+
|
32 |
+
streamer = TextStreamer(tokenizer)
|
33 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id,
|
34 |
+
temperature=0.8, repetition_penalty=1.1, do_sample=True,streamer=streamer)
|
35 |
+
pipe("The capitol of Paris is", max_new_tokens=256)
|
36 |
+
```
|
37 |
+
|
38 |
+
Training was performed using [OLMo](https://github.com/allenai/OLMo).
|
OLMo_Bitnet_1B/__init__.py
ADDED
File without changes
|
OLMo_Bitnet_1B/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (146 Bytes). View file
|
|
OLMo_Bitnet_1B/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (165 Bytes). View file
|
|
OLMo_Bitnet_1B/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (153 Bytes). View file
|
|
OLMo_Bitnet_1B/__pycache__/aliases.cpython-310.pyc
ADDED
Binary file (268 Bytes). View file
|
|
OLMo_Bitnet_1B/__pycache__/aliases.cpython-311.pyc
ADDED
Binary file (342 Bytes). View file
|
|
OLMo_Bitnet_1B/__pycache__/aliases.cpython-312.pyc
ADDED
Binary file (300 Bytes). View file
|
|
OLMo_Bitnet_1B/__pycache__/beam_search.cpython-310.pyc
ADDED
Binary file (31.6 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/beam_search.cpython-311.pyc
ADDED
Binary file (48 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/beam_search.cpython-312.pyc
ADDED
Binary file (45.6 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/config.cpython-310.pyc
ADDED
Binary file (18.1 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/config.cpython-311.pyc
ADDED
Binary file (28.4 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/config.cpython-312.pyc
ADDED
Binary file (25 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/configuration_olmo.cpython-310.pyc
ADDED
Binary file (1.83 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/configuration_olmo.cpython-311.pyc
ADDED
Binary file (2.74 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/configuration_olmo.cpython-312.pyc
ADDED
Binary file (2.36 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/exceptions.cpython-310.pyc
ADDED
Binary file (1.45 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/exceptions.cpython-311.pyc
ADDED
Binary file (1.99 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/exceptions.cpython-312.pyc
ADDED
Binary file (1.68 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/initialization.cpython-310.pyc
ADDED
Binary file (2.71 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/initialization.cpython-311.pyc
ADDED
Binary file (5.12 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/initialization.cpython-312.pyc
ADDED
Binary file (5.09 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/model.cpython-310.pyc
ADDED
Binary file (47.9 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/model.cpython-311.pyc
ADDED
Binary file (90.1 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/model.cpython-312.pyc
ADDED
Binary file (86.4 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/modeling_olmo.cpython-310.pyc
ADDED
Binary file (6.53 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/modeling_olmo.cpython-311.pyc
ADDED
Binary file (10.1 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/modeling_olmo.cpython-312.pyc
ADDED
Binary file (9.86 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/optim.cpython-310.pyc
ADDED
Binary file (19.6 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/optim.cpython-311.pyc
ADDED
Binary file (41 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/optim.cpython-312.pyc
ADDED
Binary file (36 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/safetensors_util.cpython-310.pyc
ADDED
Binary file (2.8 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/safetensors_util.cpython-311.pyc
ADDED
Binary file (5.01 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/safetensors_util.cpython-312.pyc
ADDED
Binary file (4.4 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/torch_util.cpython-310.pyc
ADDED
Binary file (5.04 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/torch_util.cpython-311.pyc
ADDED
Binary file (9.11 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/torch_util.cpython-312.pyc
ADDED
Binary file (8.08 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/util.cpython-310.pyc
ADDED
Binary file (19.7 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/util.cpython-311.pyc
ADDED
Binary file (37.3 kB). View file
|
|
OLMo_Bitnet_1B/__pycache__/util.cpython-312.pyc
ADDED
Binary file (33.2 kB). View file
|
|
OLMo_Bitnet_1B/aliases.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import PathLike
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
__all__ = ["PathOrStr"]
|
5 |
+
|
6 |
+
|
7 |
+
PathOrStr = Union[str, PathLike]
|
OLMo_Bitnet_1B/beam_search.py
ADDED
@@ -0,0 +1,1078 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is a self-contained and flexible beam search implementation adapted from
|
3 |
+
AllenNLP's beam search: https://github.com/allenai/allennlp/blob/main/allennlp/nn/beam_search.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import warnings
|
8 |
+
from abc import abstractmethod
|
9 |
+
from inspect import signature
|
10 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar, cast
|
11 |
+
|
12 |
+
import torch
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"Sampler",
|
16 |
+
"DeterministicSampler",
|
17 |
+
"MultinomialSampler",
|
18 |
+
"TopKSampler",
|
19 |
+
"TopPSampler",
|
20 |
+
"GumbelSampler",
|
21 |
+
"FinalSequenceScorer",
|
22 |
+
"SequenceLogProbabilityScorer",
|
23 |
+
"LengthNormalizedSequenceLogProbabilityScorer",
|
24 |
+
"Constraint",
|
25 |
+
"RepeatedNGramBlockingConstraint",
|
26 |
+
"BeamSearch",
|
27 |
+
]
|
28 |
+
|
29 |
+
StateType = Dict[str, torch.Tensor]
|
30 |
+
StepFunctionTypeWithTimestep = Callable[[torch.Tensor, StateType, int], Tuple[torch.Tensor, StateType]]
|
31 |
+
StepFunctionTypeNoTimestep = Callable[[torch.Tensor, StateType], Tuple[torch.Tensor, StateType]]
|
32 |
+
|
33 |
+
StepFunctionType = TypeVar("StepFunctionType", StepFunctionTypeWithTimestep, StepFunctionTypeNoTimestep)
|
34 |
+
"""
|
35 |
+
The type of step function that can be passed to [`BeamSearch.search`](#search).
|
36 |
+
|
37 |
+
This can either be [`StepFunctionTypeWithTimestep`](#stepfunctiontypewithtimestep)
|
38 |
+
or [`StepFunctionTypeNoTimestep`](#stepfunctiontypenotimestep).
|
39 |
+
"""
|
40 |
+
|
41 |
+
ConstraintStateType = List[List[Dict[str, Any]]]
|
42 |
+
|
43 |
+
|
44 |
+
class Sampler:
|
45 |
+
"""
|
46 |
+
An abstract class that can be used to sample candidates (either nodes or beams)
|
47 |
+
within `BeamSearch`.
|
48 |
+
|
49 |
+
A `Sampler` just has three methods, `init_state()`, `sample_nodes()` and `sample_beams()`.
|
50 |
+
|
51 |
+
`init_state()` takes three arguments:
|
52 |
+
|
53 |
+
- a tensor of starting log probs with shape `(batch_size,, num_classes)`,
|
54 |
+
- the batch size, an int,
|
55 |
+
- and the number of classes, also an int.
|
56 |
+
|
57 |
+
It returns a state dictionary with any state tensors needed for subsequent
|
58 |
+
calls to `sample_nodes()` and `sample_beams()`.
|
59 |
+
|
60 |
+
By default this method just returns an empty dictionary.
|
61 |
+
|
62 |
+
Both `sample_nodes()` and `sample_beams()` should take three arguments:
|
63 |
+
|
64 |
+
- tensor of normalized log probabilities with shape `(batch_size, num_examples)`,
|
65 |
+
- an integer representing the number of samples to take for each example in the batch,
|
66 |
+
- and a state dictionary which could contain any tensors needed for the `Sampler` to keep
|
67 |
+
track of state.
|
68 |
+
|
69 |
+
For `sample_nodes()`, `num_examples = num_classes`, but for `sample_beams`,
|
70 |
+
`num_examples = beam_size * per_node_beam_size`.
|
71 |
+
|
72 |
+
The return value should be a tuple containing:
|
73 |
+
|
74 |
+
- a tensor of log probabilities of the sampled examples with shape `(batch_size, num_samples)`,
|
75 |
+
- a tensor of indices of the sampled examples with shape `(batch_size, num_samples)`,
|
76 |
+
- and the updated state dictionary.
|
77 |
+
|
78 |
+
A default implementation of `sample_beams` is provided, which just deterministically
|
79 |
+
picks the `k` examples with highest log probability.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def init_state(
|
83 |
+
self, start_class_log_probabilities: torch.Tensor, batch_size: int, num_classes: int
|
84 |
+
) -> StateType:
|
85 |
+
del start_class_log_probabilities, batch_size, num_classes
|
86 |
+
return {}
|
87 |
+
|
88 |
+
@abstractmethod
|
89 |
+
def sample_nodes(
|
90 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
91 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
92 |
+
raise NotImplementedError
|
93 |
+
|
94 |
+
def sample_beams(
|
95 |
+
self, log_probs: torch.Tensor, beam_size: int, state: StateType
|
96 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
97 |
+
del state
|
98 |
+
selected_log_probs, selected_indices = torch.topk(log_probs, beam_size, dim=-1)
|
99 |
+
return selected_log_probs, selected_indices, {}
|
100 |
+
|
101 |
+
|
102 |
+
class DeterministicSampler(Sampler):
|
103 |
+
"""
|
104 |
+
A `Sampler` that just deterministically returns the `k` nodes or beams with highest
|
105 |
+
log probability.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def sample_nodes(
|
109 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
110 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
111 |
+
del state
|
112 |
+
selected_log_probs, selected_indices = torch.topk(log_probs, per_node_beam_size, dim=-1)
|
113 |
+
return selected_log_probs, selected_indices, {}
|
114 |
+
|
115 |
+
|
116 |
+
class MultinomialSampler(Sampler):
|
117 |
+
"""
|
118 |
+
A `Sampler` which samples nodes from the given multinomial distribution. Beams are sampled
|
119 |
+
in the default, non-deterministic way.
|
120 |
+
|
121 |
+
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
122 |
+
above 1.0 produces a flatter probability distribution.
|
123 |
+
:param with_replacement: Whether to sample with replacement.
|
124 |
+
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
temperature: float = 1.0,
|
130 |
+
with_replacement: bool = False,
|
131 |
+
) -> None:
|
132 |
+
self.temperature = temperature
|
133 |
+
self.with_replacement = with_replacement
|
134 |
+
|
135 |
+
def sample_nodes(
|
136 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
137 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
138 |
+
if self.temperature != 1.0:
|
139 |
+
_probabilities = torch.nn.functional.softmax(log_probs / self.temperature, dim=-1)
|
140 |
+
else:
|
141 |
+
_probabilities = log_probs.exp()
|
142 |
+
|
143 |
+
selected_indices = torch.multinomial(_probabilities, per_node_beam_size, replacement=self.with_replacement)
|
144 |
+
|
145 |
+
return torch.gather(log_probs, 1, selected_indices), selected_indices, state
|
146 |
+
|
147 |
+
|
148 |
+
class TopKSampler(Sampler):
|
149 |
+
"""
|
150 |
+
A `Sampler` which redistributes the probability mass function for nodes among the
|
151 |
+
top `k` choices, then samples from that subset after re-normalizing the probabilities.
|
152 |
+
|
153 |
+
Beams are sampled in the default, deterministic way.
|
154 |
+
|
155 |
+
:param k: The number of top choices to be selected from.
|
156 |
+
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
157 |
+
above 1.0 produces a flatter probability distribution.
|
158 |
+
:param with_replacement: If set to `True`, samples will be selected with replacement from the top k choices.
|
159 |
+
"""
|
160 |
+
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
k: int = 1,
|
164 |
+
temperature: float = 1.0,
|
165 |
+
with_replacement: bool = False,
|
166 |
+
):
|
167 |
+
self.k = k
|
168 |
+
self.temperature = temperature or 1.0
|
169 |
+
self.with_replacement = with_replacement
|
170 |
+
|
171 |
+
def sample_nodes(
|
172 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
173 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
174 |
+
if not per_node_beam_size <= self.k <= log_probs.size()[1]:
|
175 |
+
raise ValueError(
|
176 |
+
"k must be a postive integer no less than per_node_beam_size and no greater than vocabulary size"
|
177 |
+
)
|
178 |
+
|
179 |
+
# shape (both): (batch_size, k)
|
180 |
+
top_k_log_probs, top_k_indices = log_probs.topk(self.k, dim=-1)
|
181 |
+
|
182 |
+
# Apply temperature if necessary.
|
183 |
+
# shape: (batch_size, k)
|
184 |
+
if self.temperature != 1.0:
|
185 |
+
top_k_log_probs = top_k_log_probs / self.temperature
|
186 |
+
|
187 |
+
# Re-normalize the subset.
|
188 |
+
# shape: (batch_size, k)
|
189 |
+
normalized_top_k_probs = torch.nn.functional.softmax(top_k_log_probs, dim=-1)
|
190 |
+
|
191 |
+
# Sample from the re-normalized subset.
|
192 |
+
# NOTE: These indices are not indices into `log_probs`, they are indices into `top_k_log_probs`.
|
193 |
+
# shape: (batch_size, per_node_beam_size)
|
194 |
+
sampled_indices = torch.multinomial(
|
195 |
+
normalized_top_k_probs, per_node_beam_size, replacement=self.with_replacement
|
196 |
+
)
|
197 |
+
|
198 |
+
# Convert `sampled_indices` back to indices in the original `log_probs` tensor.
|
199 |
+
# shape: (batch_size, per_node_beam_size)
|
200 |
+
indices = top_k_indices.gather(-1, sampled_indices)
|
201 |
+
|
202 |
+
return log_probs.gather(1, indices), indices, state
|
203 |
+
|
204 |
+
|
205 |
+
class TopPSampler(Sampler):
|
206 |
+
"""
|
207 |
+
A `Sampler` which redistributes the probability mass function for nodes among
|
208 |
+
the top choices with a cumulative probability of at least `p`, then samples from that subset
|
209 |
+
after re-normalizing the probabilities.
|
210 |
+
|
211 |
+
Beams are sampled in the default, deterministic way.
|
212 |
+
|
213 |
+
:param p:
|
214 |
+
The cumulative probability cutoff threshold. A higher value of `p` will result in more possible
|
215 |
+
examples to sample from. If `with_replacement` is `False` and the number of possible samples is
|
216 |
+
insufficient to sample without replacement from when calling `sample_nodes`, then the top
|
217 |
+
`per_node_beam_size` examples will be chosen.
|
218 |
+
:param temperature:
|
219 |
+
A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
220 |
+
above 1.0 produces a flatter probability distribution.
|
221 |
+
:param with_replacement:
|
222 |
+
If set to `True`, samples will be selected with replacement from the top choices.
|
223 |
+
|
224 |
+
"""
|
225 |
+
|
226 |
+
def __init__(
|
227 |
+
self,
|
228 |
+
p: float = 0.9,
|
229 |
+
temperature: float = 1.0,
|
230 |
+
with_replacement: bool = False,
|
231 |
+
):
|
232 |
+
if p < 0.0 or p > 1.0:
|
233 |
+
raise ValueError("p must be a positive float no greater than 1.0")
|
234 |
+
self.p = p
|
235 |
+
self.temperature = temperature or 1.0
|
236 |
+
self.with_replacement = with_replacement
|
237 |
+
|
238 |
+
def sample_nodes(
|
239 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
240 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
241 |
+
if not per_node_beam_size <= log_probs.size()[1]:
|
242 |
+
raise ValueError("per_node_beam_size cannot be greater than vocabulary size")
|
243 |
+
|
244 |
+
# First apply temperature coefficient:
|
245 |
+
if self.temperature != 1.0:
|
246 |
+
_log_probs = torch.nn.functional.log_softmax(log_probs / self.temperature, dim=-1)
|
247 |
+
else:
|
248 |
+
_log_probs = log_probs
|
249 |
+
|
250 |
+
# Sort the probabilities in descending order to then find cumulative sum
|
251 |
+
log_probs_descending, sorting_indices = torch.sort(_log_probs, descending=True)
|
252 |
+
|
253 |
+
# shape: (batch_size, num_classes)
|
254 |
+
probabilities_descending = log_probs_descending.exp()
|
255 |
+
probabilities_summed = torch.cumsum(probabilities_descending, dim=-1)
|
256 |
+
|
257 |
+
# Create a mask for filtering out probabilities that don't make the top `p`.
|
258 |
+
# shape: (batch_size, num_classes)
|
259 |
+
exclusion_mask = probabilities_summed >= self.p
|
260 |
+
|
261 |
+
# We want to include the first index where probabilities_summed >= p, so we shift over one.
|
262 |
+
exclusion_mask[..., 1:] = exclusion_mask[..., :-1].clone()
|
263 |
+
exclusion_mask[..., 0] = False
|
264 |
+
|
265 |
+
# Make sure there's at least `per_node_beam_size` options to be selected.
|
266 |
+
if not self.with_replacement:
|
267 |
+
exclusion_mask[..., :per_node_beam_size] = False
|
268 |
+
|
269 |
+
log_probs_descending[exclusion_mask] = torch.finfo(log_probs.dtype).min
|
270 |
+
|
271 |
+
# Now re-normalized the included log probs.
|
272 |
+
# shape: (batch_size, num_classes)
|
273 |
+
filtered_probabilities = torch.nn.functional.softmax(log_probs_descending, dim=-1)
|
274 |
+
|
275 |
+
# Sample from the re-normalized subset.
|
276 |
+
# NOTE: These indices are not indices into `log_probs`, they are indices into `log_probs_descending`.
|
277 |
+
# shape: (batch_size, per_node_beam_size)
|
278 |
+
sampled_indices = torch.multinomial(
|
279 |
+
filtered_probabilities, per_node_beam_size, replacement=self.with_replacement
|
280 |
+
)
|
281 |
+
|
282 |
+
# Convert `sampled_indices` back to indices in the original `log_probs` tensor.
|
283 |
+
# shape: (batch_size, per_node_beam_size)
|
284 |
+
selected_indices = sorting_indices.gather(-1, sampled_indices)
|
285 |
+
|
286 |
+
# Return (selected log probabilities, selected classes)
|
287 |
+
# shape: (len(log_probs),1) , (len(log_probs), 1)
|
288 |
+
return torch.gather(log_probs, 1, selected_indices), selected_indices, state
|
289 |
+
|
290 |
+
|
291 |
+
class GumbelSampler(Sampler):
|
292 |
+
"""
|
293 |
+
A `Sampler` which uses the Gumbel-Top-K trick to sample without replacement. See
|
294 |
+
[*Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling
|
295 |
+
Sequences Without Replacement*, W Kool, H Van Hoof and M Welling, 2010]
|
296 |
+
(https://api.semanticscholar.org/CorpusID:76662039).
|
297 |
+
|
298 |
+
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
299 |
+
above 1.0 produces a flatter probability distribution.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, temperature: float = 1.0):
|
303 |
+
self.temperature = temperature
|
304 |
+
|
305 |
+
def init_state(
|
306 |
+
self, start_class_log_probabilities: torch.Tensor, batch_size: int, num_classes: int
|
307 |
+
) -> StateType:
|
308 |
+
# shape: (batch_size, num_classes)
|
309 |
+
zeros = start_class_log_probabilities.new_zeros((batch_size, num_classes))
|
310 |
+
|
311 |
+
# shape: (batch_size, num_classes)
|
312 |
+
G_phi_S = self.gumbel_with_max(start_class_log_probabilities, zeros)
|
313 |
+
|
314 |
+
return {"G_phi_S": G_phi_S}
|
315 |
+
|
316 |
+
def sample_nodes(
|
317 |
+
self,
|
318 |
+
log_probs: torch.Tensor,
|
319 |
+
per_node_beam_size: int,
|
320 |
+
state: StateType,
|
321 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
322 |
+
# First apply temperature coefficient:
|
323 |
+
# shape: (batch_size * beam_size, num_classes)
|
324 |
+
if self.temperature != 1.0:
|
325 |
+
_log_probs = torch.nn.functional.log_softmax(log_probs / self.temperature, dim=-1)
|
326 |
+
else:
|
327 |
+
_log_probs = log_probs
|
328 |
+
|
329 |
+
# shape: (group_size,)
|
330 |
+
phi_S = state["phi_S"]
|
331 |
+
|
332 |
+
# shape: (group_size, num_classes)
|
333 |
+
phi_S = phi_S.unsqueeze(-1).expand_as(_log_probs)
|
334 |
+
|
335 |
+
# shape: (group_size, num_classes)
|
336 |
+
phi_S_new = phi_S + _log_probs
|
337 |
+
|
338 |
+
# shape: (group_size, 1)
|
339 |
+
G_phi_S = state["G_phi_S"].unsqueeze(-1)
|
340 |
+
|
341 |
+
# shape: (group_size, num_classes)
|
342 |
+
G_phi_S_new = self.gumbel_with_max(phi_S_new, G_phi_S)
|
343 |
+
|
344 |
+
# Replace NaNs with very negative number.
|
345 |
+
# shape: (group_size, num_classes)
|
346 |
+
# G_phi_S_new[G_phi_S_new.isnan()] = torch.finfo(G_phi_S_new.dtype).min
|
347 |
+
|
348 |
+
# shape (both): (group_size, per_node_beam_size)
|
349 |
+
top_G_phi_S_new, top_indices = torch.topk(G_phi_S_new, per_node_beam_size, dim=-1)
|
350 |
+
|
351 |
+
# shape: (group_size, per_node_beam_size)
|
352 |
+
top_log_probs = log_probs.gather(1, top_indices)
|
353 |
+
|
354 |
+
return top_log_probs, top_indices, {"G_phi_S": top_G_phi_S_new}
|
355 |
+
|
356 |
+
def sample_beams(
|
357 |
+
self,
|
358 |
+
log_probs: torch.Tensor,
|
359 |
+
beam_size: int,
|
360 |
+
state: StateType,
|
361 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
362 |
+
"""
|
363 |
+
Returns the beams with the highest perturbed log probabilities.
|
364 |
+
"""
|
365 |
+
# shape (log_probs): (batch_size, beam_size * per_node_beam_size)
|
366 |
+
|
367 |
+
batch_size = log_probs.size()[0]
|
368 |
+
|
369 |
+
# shape: (batch_size * beam_size, per_node_beam_size)
|
370 |
+
G_phi_S = state["G_phi_S"]
|
371 |
+
|
372 |
+
# shape: (batch_size, beam_size * per_node_beam_size)
|
373 |
+
G_phi_S = G_phi_S.reshape_as(log_probs)
|
374 |
+
|
375 |
+
# shape (both): (batch_size, beam_size)
|
376 |
+
G_phi_S_new, selected_indices = torch.topk(G_phi_S, beam_size, dim=-1)
|
377 |
+
|
378 |
+
# shape: (batch_size, beam_size)
|
379 |
+
selected_log_probs = log_probs.gather(1, selected_indices)
|
380 |
+
|
381 |
+
# Now sort the selected beams by their true log prob.
|
382 |
+
# shape (all): (batch_size, beam_size)
|
383 |
+
selected_log_probs, sort_indices = selected_log_probs.sort(dim=-1, descending=True)
|
384 |
+
selected_indices = selected_indices.gather(1, sort_indices)
|
385 |
+
G_phi_S_new = G_phi_S_new.gather(1, sort_indices)
|
386 |
+
|
387 |
+
# shape: (batch_size * beam_size,)
|
388 |
+
G_phi_S_new = G_phi_S_new.reshape(batch_size * beam_size)
|
389 |
+
|
390 |
+
# shape: (batch_size * beam_size,)
|
391 |
+
phi_S = selected_log_probs.reshape(batch_size * beam_size)
|
392 |
+
|
393 |
+
return selected_log_probs, selected_indices, {"G_phi_S": G_phi_S_new, "phi_S": phi_S}
|
394 |
+
|
395 |
+
def gumbel(self, phi) -> torch.Tensor:
|
396 |
+
"""
|
397 |
+
Sample `Gumbel(phi)`.
|
398 |
+
|
399 |
+
`phi` should have shape `(batch_size, num_classes)`.
|
400 |
+
"""
|
401 |
+
return -torch.log(-torch.log(torch.rand_like(phi))) + phi
|
402 |
+
|
403 |
+
def gumbel_with_max(self, phi, T) -> torch.Tensor:
|
404 |
+
"""
|
405 |
+
Sample `Gumbel(phi)` conditioned on the maximum value being equal to `T`.
|
406 |
+
|
407 |
+
`phi` should have shape `(batch_size, num_classes)` and `T` should have
|
408 |
+
shape `(batch_size, 1)`.
|
409 |
+
"""
|
410 |
+
# Shape: (batch_size, num_classes)
|
411 |
+
G_phi = self.gumbel(phi)
|
412 |
+
|
413 |
+
# Now we find the maximum from these samples.
|
414 |
+
# Shape: (batch_size, )
|
415 |
+
Z, _ = G_phi.max(dim=-1)
|
416 |
+
|
417 |
+
# Shape: (batch_size, num_classes)
|
418 |
+
v = T - G_phi + torch.log1p(-torch.exp(G_phi - Z.unsqueeze(-1)))
|
419 |
+
|
420 |
+
# Shape: (batch_size, num_classes)
|
421 |
+
return T - torch.nn.functional.relu(v) - torch.log1p(torch.exp(-v.abs()))
|
422 |
+
|
423 |
+
|
424 |
+
class FinalSequenceScorer:
|
425 |
+
"""
|
426 |
+
An abstract class that can be used to score the final generated sequences found
|
427 |
+
by beam search. Given the predicted sequences and the corresponding log probabilities of
|
428 |
+
those sequences, the class calculates and returns the final score of the sequences.
|
429 |
+
|
430 |
+
The default implementation scores the sequences using the sum of the log probabilities of
|
431 |
+
the sequence, which is passed as input.
|
432 |
+
"""
|
433 |
+
|
434 |
+
@abstractmethod
|
435 |
+
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
436 |
+
"""
|
437 |
+
Score the final predictions found by beam search.
|
438 |
+
Returns a tensor of the final sequence scores of shape `(batch_size, beam_size)`.
|
439 |
+
|
440 |
+
:param predictions: A tensor containing the initial predictions with shape `(batch_size, beam_size, max_steps)`.
|
441 |
+
:param log_probabilities: A tensor containing the log probabilities of the sequence, defined as the sum
|
442 |
+
of the log probabilities per token, with shape `(batch_size, beam_size)`.
|
443 |
+
:param end_index: The index of the end symbol.
|
444 |
+
|
445 |
+
"""
|
446 |
+
raise NotImplementedError
|
447 |
+
|
448 |
+
|
449 |
+
class SequenceLogProbabilityScorer(FinalSequenceScorer):
|
450 |
+
"""
|
451 |
+
A :class:`FinalSequenceScorer` which scores the sequences by the sum of the log probabilities
|
452 |
+
across the sequence's tokens.
|
453 |
+
"""
|
454 |
+
|
455 |
+
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
456 |
+
del predictions, end_index
|
457 |
+
# The sum of the sequence log probabilities is the input parameter, so just
|
458 |
+
# return it.
|
459 |
+
return log_probabilities
|
460 |
+
|
461 |
+
|
462 |
+
class LengthNormalizedSequenceLogProbabilityScorer(FinalSequenceScorer):
|
463 |
+
"""
|
464 |
+
A :class:`FinalSequenceScorer` which scores the sequences by the average log probability of the
|
465 |
+
tokens in the sequence. It optionally includes a length penalty which promotes
|
466 |
+
or demotes sequences based on their lengths. The final score for a sequence will
|
467 |
+
be `(sequence_log_probability) / (sequence_length ** length_penalty)`. The sequence length
|
468 |
+
here includes the end token.
|
469 |
+
|
470 |
+
:param length_penalty: The length penalty to use. A value of 1.0 means no length penalty is used.
|
471 |
+
A value > 1.0 favors longer sequences, and < 1.0 favors shorter sequences.
|
472 |
+
"""
|
473 |
+
|
474 |
+
def __init__(self, length_penalty: float = 1.0):
|
475 |
+
super().__init__()
|
476 |
+
self.length_penalty = length_penalty
|
477 |
+
|
478 |
+
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
479 |
+
# shape: (batch_size, beam_size)
|
480 |
+
lengths = (predictions != end_index).long().sum(dim=2)
|
481 |
+
|
482 |
+
# If the sequence ended during beam search, the `log_probabilities` will include
|
483 |
+
# the transition to the end token. Therefore, in such situations, `lengths` is
|
484 |
+
# actually off by 1. This corrects for that.
|
485 |
+
# shape: (batch_size, beam_size)
|
486 |
+
is_end_token = predictions[:, :, -1] == end_index
|
487 |
+
lengths += is_end_token.long()
|
488 |
+
|
489 |
+
# shape: (batch_size, beam_size)
|
490 |
+
average_log_probs = log_probabilities / (lengths**self.length_penalty)
|
491 |
+
return average_log_probs
|
492 |
+
|
493 |
+
|
494 |
+
class Constraint:
|
495 |
+
"""
|
496 |
+
An abstract class that can be used to enforce constraints on the output predictions
|
497 |
+
by manipulating the class log probabilities during beam search.
|
498 |
+
|
499 |
+
A `Constraint` just has three methods that need to be implemented by subclasses:
|
500 |
+
`init_state()`, `apply()` and `_update_state()`.
|
501 |
+
|
502 |
+
`init_state()` takes one argument:
|
503 |
+
|
504 |
+
- the batch size, an int
|
505 |
+
|
506 |
+
It returns a constraint state, which is a nested list of dictionaries, with any state needed for subsequent
|
507 |
+
calls to `apply()` and `update_state()`. The length of the outer list should be equal to `batch_size`.
|
508 |
+
Each inner list should be of length 1.
|
509 |
+
|
510 |
+
`apply()` takes two arguments:
|
511 |
+
|
512 |
+
- the constraint state, which is a nested list of dictionaries. The length of the outer list is `batch_size`
|
513 |
+
and the length of each inner list is `beam_size` except on the first time `apply()` is called when it is 1.
|
514 |
+
- `class_log_probabilities`, a tensor of shape `(batch_size, beam_size, num_classes)` that contains the
|
515 |
+
log probabilities for the classes during search. The first time `apply()` is called, `beam_size = 1`.
|
516 |
+
|
517 |
+
The `apply()` method should return new `class_log_probabilities` that enforce the constraint
|
518 |
+
for this step of beam search. For instance, it may prevent a specific class from being selected by setting
|
519 |
+
the corresponding log probability to a negligible value such as `float("-inf")` or
|
520 |
+
`torch.finfo(class_log_probabilities.dtype).min`.
|
521 |
+
|
522 |
+
`_update_state()` takes two arguments:
|
523 |
+
|
524 |
+
- the copied parent constraint state, which is a nested list of dictionaries. `state[i][j]` contains the
|
525 |
+
copied state for the parent of `last_prediction[i, j]`. It is unique to that batch and beam, so it can be
|
526 |
+
directly edited in-place without affecting the others.
|
527 |
+
- last_prediction, a tensor of shape `(batch_size, beam_size)` containing the predictions from the last
|
528 |
+
step of beam search.
|
529 |
+
|
530 |
+
The `_update_state()` function should return a new constraint state, a nested list of dictionaries of
|
531 |
+
length `batch_size` and inner list of length `beam_size`, one for each of the predictions in `last_prediction`.
|
532 |
+
|
533 |
+
"""
|
534 |
+
|
535 |
+
@abstractmethod
|
536 |
+
def init_state(
|
537 |
+
self,
|
538 |
+
batch_size: int,
|
539 |
+
) -> ConstraintStateType:
|
540 |
+
raise NotImplementedError
|
541 |
+
|
542 |
+
@abstractmethod
|
543 |
+
def apply(
|
544 |
+
self,
|
545 |
+
state: ConstraintStateType,
|
546 |
+
class_log_probabilities: torch.Tensor,
|
547 |
+
) -> torch.Tensor:
|
548 |
+
raise NotImplementedError
|
549 |
+
|
550 |
+
@staticmethod
|
551 |
+
def _copy_state(
|
552 |
+
state: ConstraintStateType,
|
553 |
+
batch_size: int,
|
554 |
+
beam_size: int,
|
555 |
+
last_backpointer: Optional[torch.Tensor] = None,
|
556 |
+
) -> ConstraintStateType:
|
557 |
+
"""
|
558 |
+
Copies the `state` . This method copies the data in `state` using `copy.deepcopy()`. If this
|
559 |
+
is not appropriate for your constraint, you will need to implement the copying yourself.
|
560 |
+
"""
|
561 |
+
new_state = []
|
562 |
+
for i in range(batch_size):
|
563 |
+
batch_state = []
|
564 |
+
for j in range(beam_size):
|
565 |
+
if last_backpointer is None:
|
566 |
+
# This is the first prediction, so the backpointer is 0
|
567 |
+
backpointer = 0
|
568 |
+
else:
|
569 |
+
backpointer = last_backpointer[i, j].item()
|
570 |
+
batch_state.append(copy.deepcopy(state[i][backpointer])) # type: ignore
|
571 |
+
new_state.append(batch_state)
|
572 |
+
return new_state
|
573 |
+
|
574 |
+
def update_state(
|
575 |
+
self,
|
576 |
+
state: ConstraintStateType,
|
577 |
+
last_prediction: torch.Tensor,
|
578 |
+
last_backpointer: Optional[torch.Tensor] = None,
|
579 |
+
) -> ConstraintStateType:
|
580 |
+
batch_size, beam_size = last_prediction.size()
|
581 |
+
new_state = self._copy_state(state, batch_size, beam_size, last_backpointer)
|
582 |
+
return self._update_state(new_state, last_prediction)
|
583 |
+
|
584 |
+
@abstractmethod
|
585 |
+
def _update_state(
|
586 |
+
self,
|
587 |
+
state: ConstraintStateType,
|
588 |
+
last_prediction: torch.Tensor,
|
589 |
+
) -> ConstraintStateType:
|
590 |
+
raise NotImplementedError
|
591 |
+
|
592 |
+
|
593 |
+
class RepeatedNGramBlockingConstraint(Constraint):
|
594 |
+
def __init__(self, ngram_size: int, **kwargs) -> None:
|
595 |
+
super().__init__(**kwargs)
|
596 |
+
self.ngram_size = ngram_size
|
597 |
+
|
598 |
+
def init_state(
|
599 |
+
self,
|
600 |
+
batch_size: int,
|
601 |
+
) -> ConstraintStateType:
|
602 |
+
return [[{"seen_ngrams": {}, "current_prefix": []}] for _ in range(batch_size)]
|
603 |
+
|
604 |
+
def apply(
|
605 |
+
self,
|
606 |
+
state: ConstraintStateType,
|
607 |
+
class_log_probabilities: torch.Tensor,
|
608 |
+
) -> torch.Tensor:
|
609 |
+
for i, batch in enumerate(state):
|
610 |
+
for j, beam in enumerate(batch):
|
611 |
+
current_prefix = tuple(beam["current_prefix"])
|
612 |
+
seen_ngrams = beam["seen_ngrams"]
|
613 |
+
try:
|
614 |
+
disallowed_indices = seen_ngrams[current_prefix]
|
615 |
+
class_log_probabilities[i, j, disallowed_indices] = torch.finfo(
|
616 |
+
class_log_probabilities.dtype
|
617 |
+
).min
|
618 |
+
except KeyError:
|
619 |
+
# We have not seen this prefix before, so there is no index
|
620 |
+
# that needs to be blocked
|
621 |
+
pass
|
622 |
+
return class_log_probabilities
|
623 |
+
|
624 |
+
def _update_state(
|
625 |
+
self,
|
626 |
+
state: ConstraintStateType,
|
627 |
+
last_prediction: torch.Tensor,
|
628 |
+
) -> ConstraintStateType:
|
629 |
+
for i, batch in enumerate(state):
|
630 |
+
for j, beam in enumerate(batch):
|
631 |
+
prediction = last_prediction[i, j].item()
|
632 |
+
prefix = beam["current_prefix"]
|
633 |
+
seen_ngrams = beam["seen_ngrams"]
|
634 |
+
|
635 |
+
if len(prefix) == self.ngram_size - 1:
|
636 |
+
# This is a new ngram that we have to remember
|
637 |
+
if tuple(prefix) not in seen_ngrams:
|
638 |
+
seen_ngrams[tuple(prefix)] = []
|
639 |
+
seen_ngrams[tuple(prefix)].append(prediction)
|
640 |
+
|
641 |
+
# Create the new prefix, removing the oldest index if the prefix
|
642 |
+
# is too long
|
643 |
+
prefix.append(prediction)
|
644 |
+
if len(prefix) == self.ngram_size:
|
645 |
+
prefix.pop(0)
|
646 |
+
return state
|
647 |
+
|
648 |
+
|
649 |
+
class BeamSearch:
|
650 |
+
"""
|
651 |
+
Implements the beam search algorithm for decoding the most likely sequences.
|
652 |
+
|
653 |
+
:param end_index: The index of the "stop" or "end" token in the vocabulary. Usually the EOS token ID.
|
654 |
+
|
655 |
+
:param max_steps: The maximum number of decoding steps to take, i.e. the maximum length
|
656 |
+
of the predicted sequences.
|
657 |
+
|
658 |
+
:param beam_size: The width of the beam used.
|
659 |
+
|
660 |
+
:param per_node_beam_size: The maximum number of candidates to consider per node, at each step in the search.
|
661 |
+
If not given, this just defaults to `beam_size`. Setting this parameter
|
662 |
+
to a number smaller than `beam_size` may give better results, as it can introduce
|
663 |
+
more diversity into the search. See
|
664 |
+
[*Beam Search Strategies for Neural Machine Translation*, Freitag and Al-Onaizan, 2017]
|
665 |
+
(https://api.semanticscholar.org/CorpusID:2229477).
|
666 |
+
|
667 |
+
:param sampler: An optional `Sampler` which is used to pick next candidate nodes and beams.
|
668 |
+
If not specified, `DeterministicSampler` will be used, which just takes the
|
669 |
+
`per_node_beam_size` most likely nodes and the `beam_size` most likely beams.
|
670 |
+
|
671 |
+
Using the [`GumbelSampler`](#gumbelsampler), on the other hand, will give you
|
672 |
+
[Stochastic Beam Search](https://api.semanticscholar.org/CorpusID:76662039).
|
673 |
+
|
674 |
+
:param min_steps: The minimum number of decoding steps to take, i.e. the minimum length of
|
675 |
+
the predicted sequences. This does not include the start or end tokens. If `None`,
|
676 |
+
no minimum is enforced.
|
677 |
+
|
678 |
+
:param final_sequence_scorer: An optional `FinalSequenceScorer` which is used to score the final generated sequences.
|
679 |
+
The output from this module is what is returned by the `search` method. If not
|
680 |
+
specified, `SequenceLogProbabilityScorer` will be used, which scores the sequences
|
681 |
+
by the sum of the token log probabilities.
|
682 |
+
|
683 |
+
:param constraints: An optional list of `Constraint`s which should be applied during beam search. If not
|
684 |
+
provided, no constraints will be enforced.
|
685 |
+
|
686 |
+
"""
|
687 |
+
|
688 |
+
def __init__(
|
689 |
+
self,
|
690 |
+
end_index: int,
|
691 |
+
*,
|
692 |
+
max_steps: int = 50,
|
693 |
+
beam_size: int = 10,
|
694 |
+
per_node_beam_size: Optional[int] = None,
|
695 |
+
sampler: Optional[Sampler] = None,
|
696 |
+
min_steps: Optional[int] = None,
|
697 |
+
final_sequence_scorer: Optional[FinalSequenceScorer] = None,
|
698 |
+
constraints: Optional[List[Constraint]] = None,
|
699 |
+
) -> None:
|
700 |
+
if not max_steps > 0:
|
701 |
+
raise ValueError("max_steps must be positive")
|
702 |
+
if not beam_size > 0:
|
703 |
+
raise ValueError("beam_size must be positive")
|
704 |
+
if per_node_beam_size is not None and not per_node_beam_size > 0:
|
705 |
+
raise ValueError("per_node_beam_size must be positive")
|
706 |
+
if min_steps is not None:
|
707 |
+
if not min_steps >= 0:
|
708 |
+
raise ValueError("min_steps must be non-negative")
|
709 |
+
if not min_steps <= max_steps:
|
710 |
+
raise ValueError("min_steps must be less than or equal to max_steps")
|
711 |
+
|
712 |
+
self._end_index = end_index
|
713 |
+
self.max_steps = max_steps
|
714 |
+
self.beam_size = beam_size
|
715 |
+
self.per_node_beam_size = per_node_beam_size or beam_size
|
716 |
+
self.sampler = sampler or DeterministicSampler()
|
717 |
+
self.min_steps = min_steps or 0
|
718 |
+
self.final_sequence_scorer = final_sequence_scorer or SequenceLogProbabilityScorer()
|
719 |
+
self.constraints = constraints or []
|
720 |
+
|
721 |
+
@staticmethod
|
722 |
+
def _reconstruct_sequences(predictions, backpointers):
|
723 |
+
# Reconstruct the sequences.
|
724 |
+
# shape: [(batch_size, beam_size, 1)]
|
725 |
+
reconstructed_predictions = [predictions[-1].unsqueeze(2)]
|
726 |
+
|
727 |
+
if not backpointers:
|
728 |
+
return reconstructed_predictions
|
729 |
+
|
730 |
+
# shape: (batch_size, beam_size)
|
731 |
+
cur_backpointers = backpointers[-1]
|
732 |
+
|
733 |
+
for timestep in range(len(predictions) - 2, 0, -1):
|
734 |
+
# shape: (batch_size, beam_size, 1)
|
735 |
+
cur_preds = predictions[timestep].gather(1, cur_backpointers).unsqueeze(2)
|
736 |
+
|
737 |
+
reconstructed_predictions.append(cur_preds)
|
738 |
+
|
739 |
+
# shape: (batch_size, beam_size)
|
740 |
+
cur_backpointers = backpointers[timestep - 1].gather(1, cur_backpointers)
|
741 |
+
|
742 |
+
# shape: (batch_size, beam_size, 1)
|
743 |
+
final_preds = predictions[0].gather(1, cur_backpointers).unsqueeze(2)
|
744 |
+
|
745 |
+
reconstructed_predictions.append(final_preds)
|
746 |
+
|
747 |
+
return reconstructed_predictions
|
748 |
+
|
749 |
+
def search(
|
750 |
+
self,
|
751 |
+
start_predictions: torch.Tensor,
|
752 |
+
start_state: StateType,
|
753 |
+
step: StepFunctionType,
|
754 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
755 |
+
"""
|
756 |
+
Given a starting state and a step function, apply beam search to find the
|
757 |
+
most likely target sequences.
|
758 |
+
|
759 |
+
Returns a tuple of `(predictions, final_scores)`, where `predictions`
|
760 |
+
has shape `(batch_size, beam_size, max_steps)` and `final_scores`
|
761 |
+
has shape `(batch_size, beam_size)`.
|
762 |
+
|
763 |
+
.. note::
|
764 |
+
If your step function returns `-inf` for some log probabilities
|
765 |
+
(like if you're using a masked log-softmax) then some of the "best"
|
766 |
+
sequences returned may also have `-inf` log probability. Specifically
|
767 |
+
this happens when the beam size is smaller than the number of actions
|
768 |
+
with finite log probability (non-zero probability) returned by the step function.
|
769 |
+
Therefore if you're using a mask you may want to check the results from `search`
|
770 |
+
and potentially discard sequences with non-finite log probability.
|
771 |
+
|
772 |
+
:param start_predictions: A tensor containing the initial predictions with shape `(batch_size,)`.
|
773 |
+
Usually the initial predictions are just the index of the "start" token
|
774 |
+
in the target vocabulary.
|
775 |
+
|
776 |
+
:param start_state: The initial state passed to the `step` function. Each value of the state dict
|
777 |
+
should be a tensor of shape `(batch_size, *)`, where `*` means any other
|
778 |
+
number of dimensions.
|
779 |
+
|
780 |
+
:param step: A function that is responsible for computing the next most likely tokens,
|
781 |
+
given the current state and the predictions from the last time step.
|
782 |
+
The function should accept two or three arguments:
|
783 |
+
|
784 |
+
- a tensor of shape `(group_size,)` or representing the index of the predicted
|
785 |
+
tokens from the last time step,
|
786 |
+
- the current state, a `StateType`, and
|
787 |
+
- optionally, the timestep, an `int`.
|
788 |
+
|
789 |
+
The `group_size` will be `batch_size * beam_size`, except in the initial
|
790 |
+
step, for which it will just be `batch_size`.
|
791 |
+
|
792 |
+
The function is expected to return a tuple, where the first element
|
793 |
+
is a tensor of shape `(group_size, vocab_size)` containing
|
794 |
+
the log probabilities of the tokens for the next step, and the second
|
795 |
+
element is the updated state. The tensor in the state should have shape
|
796 |
+
`(group_size, *)`, where `*` means any other number of dimensions.
|
797 |
+
|
798 |
+
"""
|
799 |
+
step_signature = signature(step)
|
800 |
+
if len(step_signature.parameters) < 3:
|
801 |
+
# If the step function we're given does not take the time step argument, wrap it
|
802 |
+
# in one that does.
|
803 |
+
old_step = cast(StepFunctionTypeNoTimestep, step)
|
804 |
+
|
805 |
+
def new_step(last_predictions: torch.Tensor, state: Dict[str, torch.Tensor], time_step: int):
|
806 |
+
del time_step
|
807 |
+
return old_step(last_predictions, state)
|
808 |
+
|
809 |
+
return self._search(start_predictions, start_state, new_step)
|
810 |
+
else:
|
811 |
+
return self._search(start_predictions, start_state, cast(StepFunctionTypeWithTimestep, step))
|
812 |
+
|
813 |
+
def _search(
|
814 |
+
self,
|
815 |
+
start_predictions: torch.Tensor,
|
816 |
+
start_state: StateType,
|
817 |
+
step: StepFunctionTypeWithTimestep,
|
818 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
819 |
+
batch_size = start_predictions.size()[0]
|
820 |
+
|
821 |
+
# List of (batch_size, beam_size) tensors. One for each time step. Does not
|
822 |
+
# include the start symbols, which are implicit.
|
823 |
+
predictions: List[torch.Tensor] = []
|
824 |
+
|
825 |
+
# List of (batch_size, beam_size) tensors. One for each time step. None for
|
826 |
+
# the first. Stores the index n for the parent prediction, i.e.
|
827 |
+
# predictions[t-1][i][n], that it came from.
|
828 |
+
backpointers: List[torch.Tensor] = []
|
829 |
+
|
830 |
+
constraint_states = [constraint.init_state(batch_size) for constraint in self.constraints]
|
831 |
+
|
832 |
+
# Calculate the first timestep. This is done outside the main loop
|
833 |
+
# because we are going from a single decoder input (the output from the
|
834 |
+
# encoder) to the top `beam_size` decoder outputs. On the other hand,
|
835 |
+
# within the main loop we are going from the `beam_size` elements of the
|
836 |
+
# beam to `beam_size`^2 candidates from which we will select the top
|
837 |
+
# `beam_size` elements for the next iteration.
|
838 |
+
# shape: (batch_size, num_classes)
|
839 |
+
start_class_log_probabilities, state = step(start_predictions, start_state, 0)
|
840 |
+
|
841 |
+
num_classes = start_class_log_probabilities.size()[1]
|
842 |
+
|
843 |
+
# Make sure `per_node_beam_size` is not larger than `num_classes`.
|
844 |
+
if self.per_node_beam_size > num_classes:
|
845 |
+
raise ValueError(
|
846 |
+
f"Vocab size ({num_classes:d}) too small "
|
847 |
+
f"relative to per_node_beam_size ({self.per_node_beam_size:d}).\n"
|
848 |
+
f"Please decrease beam_size or per_node_beam_size."
|
849 |
+
)
|
850 |
+
|
851 |
+
sampler_state = self.sampler.init_state(start_class_log_probabilities, batch_size, num_classes)
|
852 |
+
|
853 |
+
# Apply all constraints.
|
854 |
+
if self.constraints:
|
855 |
+
# shape: (batch_size, 1, num_classes)
|
856 |
+
expanded_start_class_log_probabilities = start_class_log_probabilities.unsqueeze(1)
|
857 |
+
for constraint, constraint_state in zip(self.constraints, constraint_states):
|
858 |
+
expanded_start_class_log_probabilities = constraint.apply(
|
859 |
+
constraint_state, expanded_start_class_log_probabilities
|
860 |
+
)
|
861 |
+
start_class_log_probabilities = expanded_start_class_log_probabilities.squeeze(1)
|
862 |
+
|
863 |
+
# Prevent selecting the end symbol if there is any min_steps constraint
|
864 |
+
if self.min_steps >= 1:
|
865 |
+
start_class_log_probabilities[:, self._end_index] = torch.finfo(
|
866 |
+
start_class_log_probabilities.dtype
|
867 |
+
).min
|
868 |
+
|
869 |
+
# Get the initial predicted classed and their log probabilities.
|
870 |
+
# shape: (batch_size, beam_size), (batch_size, beam_size)
|
871 |
+
(
|
872 |
+
start_top_log_probabilities,
|
873 |
+
start_predicted_classes,
|
874 |
+
sampler_state,
|
875 |
+
) = self.sampler.sample_beams(start_class_log_probabilities, self.beam_size, sampler_state)
|
876 |
+
|
877 |
+
if self.beam_size == 1 and (start_predicted_classes == self._end_index).all():
|
878 |
+
warnings.warn(
|
879 |
+
"Empty sequences predicted. You may want to increase the beam size or ensure "
|
880 |
+
"your step function is working properly.",
|
881 |
+
RuntimeWarning,
|
882 |
+
)
|
883 |
+
return start_predicted_classes.unsqueeze(-1), start_top_log_probabilities
|
884 |
+
|
885 |
+
# The log probabilities for the last time step.
|
886 |
+
# shape: (batch_size, beam_size)
|
887 |
+
last_log_probabilities = start_top_log_probabilities
|
888 |
+
|
889 |
+
# shape: [(batch_size, beam_size)]
|
890 |
+
predictions.append(start_predicted_classes)
|
891 |
+
|
892 |
+
# Log probability tensor that mandates that the end token is selected.
|
893 |
+
# shape: (batch_size * beam_size, num_classes)
|
894 |
+
log_probs_after_end = start_class_log_probabilities.new_full(
|
895 |
+
(batch_size * self.beam_size, num_classes),
|
896 |
+
torch.finfo(start_class_log_probabilities.dtype).min,
|
897 |
+
)
|
898 |
+
log_probs_after_end[:, self._end_index] = 0.0
|
899 |
+
|
900 |
+
# Set the same state for each element in the beam.
|
901 |
+
self._update_initial_state(state, batch_size)
|
902 |
+
|
903 |
+
for i, constraint in enumerate(self.constraints):
|
904 |
+
constraint_states[i] = constraint.update_state(constraint_states[i], start_predicted_classes)
|
905 |
+
|
906 |
+
for timestep in range(self.max_steps - 1):
|
907 |
+
# shape: (batch_size * beam_size,)
|
908 |
+
last_predictions = predictions[-1].reshape(batch_size * self.beam_size)
|
909 |
+
|
910 |
+
# If every predicted token from the last step is `self._end_index`,
|
911 |
+
# then we can stop early.
|
912 |
+
if (last_predictions == self._end_index).all():
|
913 |
+
break
|
914 |
+
# Take a step. This get the predicted log probs of the next classes
|
915 |
+
# and updates the state.
|
916 |
+
# shape: (batch_size * beam_size, num_classes)
|
917 |
+
class_log_probabilities, state = step(last_predictions, state, timestep + 1)
|
918 |
+
|
919 |
+
# Apply all constraints.
|
920 |
+
if self.constraints:
|
921 |
+
# shape: (batch_size, beam_size, num_classes)
|
922 |
+
reshaped_class_log_probabilities = class_log_probabilities.view(batch_size, self.beam_size, -1)
|
923 |
+
for constraint, constraint_state in zip(self.constraints, constraint_states):
|
924 |
+
reshaped_class_log_probabilities = constraint.apply(
|
925 |
+
constraint_state, reshaped_class_log_probabilities
|
926 |
+
)
|
927 |
+
# shape: (batch_size * beam_size, num_classes)
|
928 |
+
class_log_probabilities = reshaped_class_log_probabilities.view(batch_size * self.beam_size, -1)
|
929 |
+
|
930 |
+
# The `timestep`-th iteration of the for loop is generating the `timestep + 2`-th token
|
931 |
+
# of the sequence (because `timestep` is 0-indexed and we generated the first token
|
932 |
+
# before the for loop). Here we block the end index if the search is not allowed to
|
933 |
+
# terminate on this iteration.
|
934 |
+
if timestep + 2 <= self.min_steps:
|
935 |
+
class_log_probabilities[:, self._end_index] = torch.finfo(class_log_probabilities.dtype).min
|
936 |
+
|
937 |
+
# shape: (batch_size * beam_size, num_classes)
|
938 |
+
last_predictions_expanded = last_predictions.unsqueeze(-1).expand(
|
939 |
+
batch_size * self.beam_size, num_classes
|
940 |
+
)
|
941 |
+
|
942 |
+
# Here we are finding any beams where we predicted the end token in
|
943 |
+
# the previous timestep and replacing the distribution with a
|
944 |
+
# one-hot distribution, forcing the beam to predict the end token
|
945 |
+
# this timestep as well.
|
946 |
+
# shape: (batch_size * beam_size, num_classes)
|
947 |
+
cleaned_log_probabilities = torch.where(
|
948 |
+
last_predictions_expanded == self._end_index,
|
949 |
+
log_probs_after_end,
|
950 |
+
class_log_probabilities,
|
951 |
+
)
|
952 |
+
|
953 |
+
# shape (both): (batch_size * beam_size, per_node_beam_size)
|
954 |
+
top_log_probabilities, predicted_classes, sampler_state = self.sampler.sample_nodes(
|
955 |
+
cleaned_log_probabilities, self.per_node_beam_size, sampler_state
|
956 |
+
)
|
957 |
+
|
958 |
+
# Here we expand the last log probabilities to (batch_size * beam_size, per_node_beam_size)
|
959 |
+
# so that we can add them to the current log probs for this timestep.
|
960 |
+
# This lets us maintain the log probability of each element on the beam.
|
961 |
+
# shape: (batch_size * beam_size, per_node_beam_size)
|
962 |
+
expanded_last_log_probabilities = (
|
963 |
+
last_log_probabilities.unsqueeze(2)
|
964 |
+
.expand(batch_size, self.beam_size, self.per_node_beam_size)
|
965 |
+
.reshape(batch_size * self.beam_size, self.per_node_beam_size)
|
966 |
+
)
|
967 |
+
|
968 |
+
# shape: (batch_size * beam_size, per_node_beam_size)
|
969 |
+
summed_top_log_probabilities = top_log_probabilities + expanded_last_log_probabilities
|
970 |
+
|
971 |
+
# shape: (batch_size, beam_size * per_node_beam_size)
|
972 |
+
reshaped_summed = summed_top_log_probabilities.reshape(
|
973 |
+
batch_size, self.beam_size * self.per_node_beam_size
|
974 |
+
)
|
975 |
+
|
976 |
+
# shape: (batch_size, beam_size * per_node_beam_size)
|
977 |
+
reshaped_predicted_classes = predicted_classes.reshape(
|
978 |
+
batch_size, self.beam_size * self.per_node_beam_size
|
979 |
+
)
|
980 |
+
|
981 |
+
# Keep only the top `beam_size` beam indices.
|
982 |
+
# shape (both): (batch_size, beam_size)
|
983 |
+
(
|
984 |
+
restricted_beam_log_probs,
|
985 |
+
restricted_beam_indices,
|
986 |
+
sampler_state,
|
987 |
+
) = self.sampler.sample_beams(reshaped_summed, self.beam_size, sampler_state)
|
988 |
+
|
989 |
+
# Use the beam indices to extract the corresponding classes.
|
990 |
+
# shape: (batch_size, beam_size)
|
991 |
+
restricted_predicted_classes = reshaped_predicted_classes.gather(1, restricted_beam_indices)
|
992 |
+
|
993 |
+
predictions.append(restricted_predicted_classes)
|
994 |
+
|
995 |
+
# shape: (batch_size, beam_size)
|
996 |
+
last_log_probabilities = restricted_beam_log_probs
|
997 |
+
|
998 |
+
# The beam indices come from a `beam_size * per_node_beam_size` dimension where the
|
999 |
+
# indices with a common ancestor are grouped together. Hence
|
1000 |
+
# dividing by per_node_beam_size gives the ancestor. (Note that this is integer
|
1001 |
+
# division as the tensor is a LongTensor.)
|
1002 |
+
# shape: (batch_size, beam_size)
|
1003 |
+
backpointer = torch.divide(restricted_beam_indices, self.per_node_beam_size, rounding_mode="trunc")
|
1004 |
+
backpointers.append(backpointer)
|
1005 |
+
|
1006 |
+
# Keep only the pieces of the state tensors corresponding to the
|
1007 |
+
# ancestors created this iteration.
|
1008 |
+
self._update_state(state, backpointer)
|
1009 |
+
|
1010 |
+
for i, constraint in enumerate(self.constraints):
|
1011 |
+
constraint_states[i] = constraint.update_state(
|
1012 |
+
constraint_states[i], restricted_predicted_classes, last_backpointer=backpointer
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
# Warn about "-inf" log probabilities if not using any constraints (negligible
|
1016 |
+
# log probabilities are expected when using constraints).
|
1017 |
+
if not self.constraints and (
|
1018 |
+
not torch.isfinite(last_log_probabilities).all()
|
1019 |
+
or (last_log_probabilities == torch.finfo(last_log_probabilities.dtype).min).any()
|
1020 |
+
):
|
1021 |
+
warnings.warn(
|
1022 |
+
"Negligible log probabilities encountered ('-inf' or equivalent). "
|
1023 |
+
"Some final sequences may not make sense. "
|
1024 |
+
"This can happen when the beam size is larger than the number of valid (non-zero "
|
1025 |
+
"probability) transitions that the step function produces.",
|
1026 |
+
RuntimeWarning,
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
reconstructed_predictions = self._reconstruct_sequences(predictions, backpointers)
|
1030 |
+
|
1031 |
+
# shape: (batch_size, beam_size, max_steps)
|
1032 |
+
all_predictions = torch.cat(list(reversed(reconstructed_predictions)), 2)
|
1033 |
+
|
1034 |
+
# Calculate the final sequence scores
|
1035 |
+
# shape: (batch_size, beam_size)
|
1036 |
+
final_scores = self.final_sequence_scorer.score(all_predictions, last_log_probabilities, self._end_index)
|
1037 |
+
|
1038 |
+
# Sort the sequences based on the final scores so the best scoring
|
1039 |
+
# sequence is at index 0
|
1040 |
+
sorted_final_scores, sorted_indices = torch.sort(final_scores, dim=1, descending=True)
|
1041 |
+
sorted_all_predictions = torch.gather(
|
1042 |
+
all_predictions, 1, sorted_indices.unsqueeze(-1).expand_as(all_predictions)
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
return sorted_all_predictions, sorted_final_scores
|
1046 |
+
|
1047 |
+
def _update_initial_state(self, state: StateType, batch_size: int):
|
1048 |
+
"""
|
1049 |
+
Expand tensors in a state dictionary from `(batch_size, *)` to `(batch_size * beam_size, *)`.
|
1050 |
+
"""
|
1051 |
+
for key, state_tensor in state.items():
|
1052 |
+
if state_tensor is None:
|
1053 |
+
continue
|
1054 |
+
# shape: (batch_size * beam_size, *)
|
1055 |
+
_, *last_dims = state_tensor.size()
|
1056 |
+
state[key] = (
|
1057 |
+
state_tensor.unsqueeze(1)
|
1058 |
+
.expand(batch_size, self.beam_size, *last_dims)
|
1059 |
+
.reshape(batch_size * self.beam_size, *last_dims)
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
def _update_state(self, state: StateType, backpointer: torch.Tensor):
|
1063 |
+
batch_size = backpointer.size()[0]
|
1064 |
+
|
1065 |
+
for key, state_tensor in state.items():
|
1066 |
+
if state_tensor is None:
|
1067 |
+
continue
|
1068 |
+
_, *last_dims = state_tensor.size()
|
1069 |
+
# shape: (batch_size, beam_size, *)
|
1070 |
+
expanded_backpointer = backpointer.view(batch_size, self.beam_size, *([1] * len(last_dims))).expand(
|
1071 |
+
batch_size, self.beam_size, *last_dims
|
1072 |
+
)
|
1073 |
+
# shape: (batch_size * beam_size, *)
|
1074 |
+
state[key] = (
|
1075 |
+
state_tensor.reshape(batch_size, self.beam_size, *last_dims)
|
1076 |
+
.gather(1, expanded_backpointer)
|
1077 |
+
.reshape(batch_size * self.beam_size, *last_dims)
|
1078 |
+
)
|
OLMo_Bitnet_1B/checkpoint.py
ADDED
@@ -0,0 +1,1671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import io
|
3 |
+
import logging
|
4 |
+
import pickle
|
5 |
+
import shutil
|
6 |
+
import traceback
|
7 |
+
from abc import ABCMeta, abstractmethod
|
8 |
+
from collections import defaultdict
|
9 |
+
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
|
10 |
+
from contextlib import contextmanager
|
11 |
+
from copy import deepcopy
|
12 |
+
from dataclasses import dataclass, field, replace
|
13 |
+
from functools import reduce
|
14 |
+
from multiprocessing import shared_memory
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Any, Dict, Generator, List, Optional, Set, Tuple, cast
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.distributed.checkpoint as dist_cp
|
21 |
+
import torch.multiprocessing as mp
|
22 |
+
from packaging import version
|
23 |
+
from torch.distributed import _remote_device
|
24 |
+
from torch.distributed._shard._utils import narrow_tensor_by_index
|
25 |
+
from torch.distributed._shard.metadata import ShardMetadata
|
26 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
27 |
+
from torch.distributed.checkpoint.filesystem import WriteResult, _StorageInfo
|
28 |
+
from torch.distributed.checkpoint.metadata import Metadata, MetadataIndex
|
29 |
+
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
|
30 |
+
from torch.distributed.checkpoint.planner import LoadItemType, ReadItem
|
31 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
32 |
+
from torch.distributed.fsdp import StateDictType
|
33 |
+
from torch.distributed.fsdp.api import (
|
34 |
+
FullOptimStateDictConfig,
|
35 |
+
FullStateDictConfig,
|
36 |
+
ShardedOptimStateDictConfig,
|
37 |
+
ShardedStateDictConfig,
|
38 |
+
)
|
39 |
+
from torch.futures import Future
|
40 |
+
|
41 |
+
try:
|
42 |
+
from torch.distributed.fsdp.flat_param import FlatParamHandle # type: ignore
|
43 |
+
except ModuleNotFoundError:
|
44 |
+
from torch.distributed.fsdp._flat_param import FlatParamHandle # type: ignore
|
45 |
+
|
46 |
+
from . import util
|
47 |
+
|
48 |
+
from .aliases import PathOrStr
|
49 |
+
from .config import BaseConfig, ShardedCheckpointerType, TrainConfig
|
50 |
+
from .exceptions import OLMoCheckpointError
|
51 |
+
from .optim import Optimizer, fix_optim_state_dict
|
52 |
+
from .safetensors_util import safetensors_file_to_state_dict
|
53 |
+
from .torch_util import (
|
54 |
+
barrier,
|
55 |
+
gc_cuda,
|
56 |
+
get_fs_local_rank,
|
57 |
+
get_global_rank,
|
58 |
+
get_world_size,
|
59 |
+
)
|
60 |
+
from .util import (
|
61 |
+
_get_s3_client,
|
62 |
+
default_thread_count,
|
63 |
+
dir_is_empty,
|
64 |
+
get_bytes_range,
|
65 |
+
get_progress_bar,
|
66 |
+
resource_path,
|
67 |
+
upload,
|
68 |
+
wait_for,
|
69 |
+
)
|
70 |
+
|
71 |
+
__all__ = [
|
72 |
+
"save_fsdp_model_and_optim_state",
|
73 |
+
"load_fsdp_model_and_optim_state",
|
74 |
+
"load_fsdp_optim_state",
|
75 |
+
"save_state_dict",
|
76 |
+
"load_state_dict",
|
77 |
+
"load_model_state",
|
78 |
+
"RemoteFileSystemWriter",
|
79 |
+
"RemoteFileSystemReader",
|
80 |
+
"Checkpointer",
|
81 |
+
"FullCheckpointer",
|
82 |
+
"TorchNewStyleShardedCheckpointer",
|
83 |
+
"TorchLegacyShardedCheckpointer",
|
84 |
+
"LocalShardedCheckpointer",
|
85 |
+
"build_sharded_checkpointer",
|
86 |
+
]
|
87 |
+
|
88 |
+
|
89 |
+
log = logging.getLogger(__name__)
|
90 |
+
|
91 |
+
MODEL_AND_OPTIM_FOLDER = "model_and_optim"
|
92 |
+
|
93 |
+
|
94 |
+
def save_fsdp_model_and_optim_state(
|
95 |
+
checkpoint_dir: PathOrStr,
|
96 |
+
fsdp_model: FSDP,
|
97 |
+
optim: Optimizer,
|
98 |
+
*,
|
99 |
+
upload_to: Optional[str] = None,
|
100 |
+
save_overwrite: bool = False,
|
101 |
+
):
|
102 |
+
"""
|
103 |
+
Use this to save a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
|
104 |
+
functions. This should be used during distributed training and should be called by all ranks.
|
105 |
+
|
106 |
+
:param checkpoint_dir: The directory to save to.
|
107 |
+
:param fsdp_model: The FSDP model.
|
108 |
+
:param optim: The FSDP model's optimizer.
|
109 |
+
:param upload_to: Optional, a remote "directory" to upload the checkpoint files to.
|
110 |
+
:param save_overwrite: Overwrite existing files.
|
111 |
+
|
112 |
+
:raises FileExistsError: If a model and optim checkpoint already exists in ``checkpoint_dir`` and ``save_overwrite=False``.
|
113 |
+
"""
|
114 |
+
checkpoint_dir = Path(checkpoint_dir)
|
115 |
+
target_dir = checkpoint_dir / MODEL_AND_OPTIM_FOLDER
|
116 |
+
if save_overwrite:
|
117 |
+
if get_fs_local_rank() == 0:
|
118 |
+
shutil.rmtree(target_dir, ignore_errors=True)
|
119 |
+
elif not dir_is_empty(target_dir):
|
120 |
+
raise FileExistsError(target_dir)
|
121 |
+
barrier()
|
122 |
+
if get_fs_local_rank() == 0:
|
123 |
+
target_dir.mkdir(exist_ok=True, parents=True)
|
124 |
+
barrier()
|
125 |
+
with FSDP.state_dict_type(
|
126 |
+
fsdp_model,
|
127 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
128 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
129 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
130 |
+
):
|
131 |
+
model_and_optim_state = {
|
132 |
+
"model": fsdp_model.state_dict(),
|
133 |
+
"optim": FSDP.optim_state_dict(fsdp_model, optim),
|
134 |
+
}
|
135 |
+
dist_cp.save_state_dict(
|
136 |
+
model_and_optim_state,
|
137 |
+
RemoteFileSystemWriter(
|
138 |
+
target_dir,
|
139 |
+
upload_to=None if upload_to is None else f"{upload_to.rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}",
|
140 |
+
save_overwrite=save_overwrite,
|
141 |
+
),
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
def load_fsdp_model_and_optim_state(
|
146 |
+
checkpoint_dir: PathOrStr,
|
147 |
+
fsdp_model: FSDP,
|
148 |
+
optim: Optimizer,
|
149 |
+
*,
|
150 |
+
local_cache: Optional[PathOrStr] = None,
|
151 |
+
load_optimizer_state: bool = True,
|
152 |
+
):
|
153 |
+
"""
|
154 |
+
Use this to load a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
|
155 |
+
functions. This should be used during distributed training and should be called by all ranks.
|
156 |
+
|
157 |
+
:param checkpoint_dir: The checkpoint directory to load from. This can be a local or remote directory.
|
158 |
+
:param fsdp_model: The FSDP model.
|
159 |
+
:param optim: The FSDP model's optimizer.
|
160 |
+
:param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
|
161 |
+
remote "directory" but there might be a cached version of the same artifacts.
|
162 |
+
:param load_optimizer_state: Set to ``False`` to skip loading the optimizer state.
|
163 |
+
|
164 |
+
:raises FileNotFoundError: If the ``checkpoint_dir`` doesn't contain a model and optimizer checkpoint.
|
165 |
+
"""
|
166 |
+
load_path = str(checkpoint_dir).rstrip("/")
|
167 |
+
local_cache = None if local_cache is None else Path(local_cache)
|
168 |
+
with FSDP.state_dict_type(
|
169 |
+
fsdp_model,
|
170 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
171 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
172 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
173 |
+
):
|
174 |
+
# Load the model state dict in place.
|
175 |
+
log.info("Loading model state...")
|
176 |
+
model_state = {"model": fsdp_model.state_dict()}
|
177 |
+
dist_cp.load_state_dict(
|
178 |
+
model_state,
|
179 |
+
RemoteFileSystemReader(
|
180 |
+
f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
|
181 |
+
local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
|
182 |
+
),
|
183 |
+
)
|
184 |
+
fsdp_model.load_state_dict(model_state["model"])
|
185 |
+
|
186 |
+
if not load_optimizer_state:
|
187 |
+
return
|
188 |
+
|
189 |
+
# Load optim state dict in place.
|
190 |
+
log.info("Loading sharded optimizer state...")
|
191 |
+
optim_state = load_sharded_optimizer_state_dict(
|
192 |
+
model_state_dict=model_state["model"],
|
193 |
+
optimizer_key="optim",
|
194 |
+
storage_reader=RemoteFileSystemReader(
|
195 |
+
f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
|
196 |
+
local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
|
197 |
+
),
|
198 |
+
)
|
199 |
+
del model_state
|
200 |
+
gc_cuda()
|
201 |
+
load_fsdp_optim_state(fsdp_model, optim, optim_state["optim"])
|
202 |
+
|
203 |
+
|
204 |
+
def load_fsdp_optim_state(fsdp_model: FSDP, optim: Optimizer, optim_state: Dict[str, Any]):
|
205 |
+
log.info("Flattening sharded optimizer state...")
|
206 |
+
# NOTE: Careful! The order of the these arguments has changed from 2.0 to 2.1... ¯\_(ツ)_/¯
|
207 |
+
if version.parse(torch.__version__) < version.parse("2.1.0"):
|
208 |
+
flattened_osd = FSDP.optim_state_dict_to_load(optim_state, fsdp_model, optim) # type: ignore
|
209 |
+
else:
|
210 |
+
flattened_osd = FSDP.optim_state_dict_to_load(fsdp_model, optim, optim_state) # type: ignore
|
211 |
+
del optim_state
|
212 |
+
gc.collect()
|
213 |
+
log.info("Loading flattened optimizer state...")
|
214 |
+
# Put optim state on CPU since `Optimizer.load_state_dict()` will create a deepcopy of the whole state dict,
|
215 |
+
# which takes up unnecessary GPU memory.
|
216 |
+
for state in flattened_osd["state"].values():
|
217 |
+
for k in state.keys():
|
218 |
+
v = state[k]
|
219 |
+
if isinstance(v, torch.Tensor):
|
220 |
+
state[k] = v.to(device="cpu")
|
221 |
+
gc_cuda()
|
222 |
+
optim.load_state_dict(fix_optim_state_dict(optim, flattened_osd))
|
223 |
+
|
224 |
+
|
225 |
+
def save_state_dict(
|
226 |
+
checkpoint_dir: PathOrStr,
|
227 |
+
fname: str,
|
228 |
+
state_dict: Dict[str, Any],
|
229 |
+
*,
|
230 |
+
upload_to: Optional[str] = None,
|
231 |
+
save_overwrite: bool = False,
|
232 |
+
synchronize: bool = True,
|
233 |
+
):
|
234 |
+
"""
|
235 |
+
Save a regular state dict to the file ``fname`` within ``checkpoint_dir`` using :func:`torch.save()`.
|
236 |
+
This can be used during distributed training or not. If during distributed training the ``fname`` should be unique
|
237 |
+
for each rank.
|
238 |
+
|
239 |
+
:param checkpoint_dir: The directory to save to.
|
240 |
+
:param fname: The target file within ``checkpoint_dir`` to save to. This should be a path relative to the ``checkpoint_dir``.
|
241 |
+
:param state_dict: The state dict to save.
|
242 |
+
:param upload_to: Optional, a remote "directory" to upload the file to.
|
243 |
+
:param save_overwrite: Overwrite existing files.
|
244 |
+
:param synchronize: If ``False``, don't do any distributed synchronization. Use this when only calling
|
245 |
+
this function from a single rank.
|
246 |
+
|
247 |
+
:raises FileExistsError: If the ``fname`` already exists within ``checkpoint_dir`` and ``save_overwrite=False``.
|
248 |
+
"""
|
249 |
+
checkpoint_dir = Path(checkpoint_dir)
|
250 |
+
target_path = checkpoint_dir / fname
|
251 |
+
if save_overwrite:
|
252 |
+
target_path.unlink(missing_ok=True)
|
253 |
+
elif target_path.is_file():
|
254 |
+
raise FileExistsError(target_path)
|
255 |
+
if synchronize:
|
256 |
+
barrier()
|
257 |
+
target_path.parent.mkdir(exist_ok=True, parents=True)
|
258 |
+
if synchronize:
|
259 |
+
barrier()
|
260 |
+
torch.save(state_dict, target_path)
|
261 |
+
if upload_to is not None:
|
262 |
+
upload_target = f"{upload_to.rstrip('/')}/{fname}"
|
263 |
+
log.info(f"Uploading {target_path} to {upload_target}...")
|
264 |
+
upload(target_path, upload_target, save_overwrite=save_overwrite)
|
265 |
+
|
266 |
+
|
267 |
+
def load_state_dict(
|
268 |
+
checkpoint_dir: PathOrStr,
|
269 |
+
fname: str,
|
270 |
+
*,
|
271 |
+
local_cache: Optional[PathOrStr] = None,
|
272 |
+
map_location: Optional[str] = None,
|
273 |
+
):
|
274 |
+
"""
|
275 |
+
Load a regular state dict from the file ``fname`` within ``checkpoint_dir`` using :func:`torch.load()`.
|
276 |
+
This can be used during distributed training or not.
|
277 |
+
|
278 |
+
:param checkpoint_dir: A local or remote checkpoint directory.
|
279 |
+
:param fname: The target file within the ``checkpoint_dir``. This should be a path relative to the ``checkpoint_dir``.
|
280 |
+
:param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
|
281 |
+
remote "directory" but there might be a cached version of the same artifacts.
|
282 |
+
|
283 |
+
:raises FileNotFoundError: If ``fname`` doesn't exist in the ``checkpoint_dir`` or the local cache.
|
284 |
+
"""
|
285 |
+
if fname.endswith(".pt"):
|
286 |
+
# Try safetensors version first.
|
287 |
+
try:
|
288 |
+
path = resource_path(
|
289 |
+
str(checkpoint_dir).rstrip("/"), fname[:-2] + "safetensors", local_cache=local_cache
|
290 |
+
)
|
291 |
+
return safetensors_file_to_state_dict(path, map_location=map_location)
|
292 |
+
except FileNotFoundError:
|
293 |
+
pass
|
294 |
+
|
295 |
+
path = resource_path(str(checkpoint_dir).rstrip("/"), fname, local_cache=local_cache)
|
296 |
+
return torch.load(path, map_location=map_location)
|
297 |
+
|
298 |
+
|
299 |
+
def load_model_state(checkpoint_dir: PathOrStr, model: torch.nn.Module):
|
300 |
+
"""
|
301 |
+
Load model state from a distributed FSDP model checkpoint created from :func:`save_fsdp_model_and_optim_state()`.
|
302 |
+
Note that ``model`` should not be wrapped with FSDP.
|
303 |
+
"""
|
304 |
+
state_dict = {"model": model.state_dict()}
|
305 |
+
dist_cp.load_state_dict(
|
306 |
+
state_dict,
|
307 |
+
RemoteFileSystemReader(f"{str(checkpoint_dir).rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}"),
|
308 |
+
no_dist=True,
|
309 |
+
)
|
310 |
+
model.load_state_dict(state_dict["model"])
|
311 |
+
|
312 |
+
|
313 |
+
class RemoteFileSystemWriter(dist_cp.FileSystemWriter):
|
314 |
+
"""
|
315 |
+
A subclass of :class:`~torch.distributed.checkpoint.FileSystemWriter` that can upload files
|
316 |
+
directly to a cloud bucket when ``upload_to`` is specified.
|
317 |
+
"""
|
318 |
+
|
319 |
+
def __init__(
|
320 |
+
self,
|
321 |
+
path: PathOrStr,
|
322 |
+
single_file_per_rank: bool = True,
|
323 |
+
sync_files: bool = True,
|
324 |
+
thread_count: Optional[int] = None,
|
325 |
+
per_thread_copy_ahead: int = 10_000_000,
|
326 |
+
upload_to: Optional[str] = None,
|
327 |
+
save_overwrite: bool = False,
|
328 |
+
) -> None:
|
329 |
+
if thread_count is not None and thread_count <= 0:
|
330 |
+
raise ValueError("thread count must be at least 1")
|
331 |
+
super().__init__(
|
332 |
+
path,
|
333 |
+
single_file_per_rank=single_file_per_rank,
|
334 |
+
sync_files=sync_files,
|
335 |
+
# NOTE: we default to 1 thread here instead of whatever `default_thread_count()`
|
336 |
+
# returns because uploading big checkpoint files with multiple threads causes
|
337 |
+
# boto3 to fail in weird ways.
|
338 |
+
thread_count=thread_count or 1,
|
339 |
+
per_thread_copy_ahead=per_thread_copy_ahead,
|
340 |
+
)
|
341 |
+
self.upload_to = None if upload_to is None else upload_to.rstrip("/")
|
342 |
+
self.save_overwrite = save_overwrite
|
343 |
+
|
344 |
+
def write_data(
|
345 |
+
self,
|
346 |
+
plan: dist_cp.SavePlan,
|
347 |
+
planner: dist_cp.SavePlanner,
|
348 |
+
) -> Future[List[WriteResult]]:
|
349 |
+
fut = super().write_data(plan, planner)
|
350 |
+
if self.upload_to is not None:
|
351 |
+
files_to_upload = set()
|
352 |
+
for write_result in fut.wait():
|
353 |
+
files_to_upload.add(write_result.storage_data.relative_path)
|
354 |
+
|
355 |
+
# Create the global S3 client up front to work around a threading issue in boto.
|
356 |
+
if self.upload_to.startswith("s3://"):
|
357 |
+
_get_s3_client("s3")
|
358 |
+
elif self.upload_to.startswith("r2://"):
|
359 |
+
_get_s3_client("r2")
|
360 |
+
|
361 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
362 |
+
futures = []
|
363 |
+
for fname in files_to_upload:
|
364 |
+
source = self.path / fname
|
365 |
+
target = f"{self.upload_to}/{fname}"
|
366 |
+
log.info(f"Uploading {source} to {target}...")
|
367 |
+
futures.append(executor.submit(upload, source, target, save_overwrite=self.save_overwrite))
|
368 |
+
for f in as_completed(futures):
|
369 |
+
try:
|
370 |
+
f.result()
|
371 |
+
except BaseException:
|
372 |
+
# NOTE: we might get an error here that can't be pickled, which causes a different failure
|
373 |
+
# later when PyTorch tries to reduce that error across ranks. So here we just make
|
374 |
+
# sure we're raising a simple error type that can be pickled.
|
375 |
+
raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
|
376 |
+
return fut
|
377 |
+
|
378 |
+
def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
|
379 |
+
super().finish(metadata, results)
|
380 |
+
if self.upload_to is not None:
|
381 |
+
source = self.path / ".metadata"
|
382 |
+
target = f"{self.upload_to}/.metadata"
|
383 |
+
log.info(f"Uploading {source} to {target}...")
|
384 |
+
upload(source, target, save_overwrite=self.save_overwrite)
|
385 |
+
|
386 |
+
|
387 |
+
class RemoteFileSystemReader(dist_cp.StorageReader):
|
388 |
+
"""
|
389 |
+
A :class:`~torch.distributed.checkpoint.StorageReader` based on :class:`~torch.distributed.checkpoint.FileSystemReader`
|
390 |
+
that can read data directly from cloud storage as well as a local directory.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(
|
394 |
+
self, path: PathOrStr, *, local_cache: Optional[PathOrStr] = None, thread_count: Optional[int] = None
|
395 |
+
):
|
396 |
+
super().__init__()
|
397 |
+
if thread_count is not None and thread_count <= 0:
|
398 |
+
raise ValueError("thread count must be at least 1")
|
399 |
+
self.path = str(path).rstrip("/")
|
400 |
+
self.cache = None if local_cache is None else Path(local_cache)
|
401 |
+
self.thread_count = thread_count or default_thread_count()
|
402 |
+
self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()
|
403 |
+
self._metadata: Optional[Metadata] = None
|
404 |
+
|
405 |
+
def _get_bytes(self, relative_path: str, offset: int, length: int) -> bytes:
|
406 |
+
if self.cache is not None and (path := self.cache / relative_path).is_file():
|
407 |
+
return get_bytes_range(path, offset, length)
|
408 |
+
else:
|
409 |
+
return get_bytes_range(f"{self.path}/{relative_path}", offset, length)
|
410 |
+
|
411 |
+
def _get_content_for_read(self, read_item: ReadItem) -> Tuple[ReadItem, bytes]:
|
412 |
+
sinfo = self.storage_data[read_item.storage_index]
|
413 |
+
content = self._get_bytes(sinfo.relative_path, sinfo.offset, sinfo.length)
|
414 |
+
return (read_item, content)
|
415 |
+
|
416 |
+
def read_data(self, plan: dist_cp.LoadPlan, planner: dist_cp.LoadPlanner) -> Future[None]:
|
417 |
+
# Create the global S3 client up front to work around a threading issue in boto.
|
418 |
+
if isinstance(self.path, str):
|
419 |
+
if self.path.startswith("s3://"):
|
420 |
+
_get_s3_client("s3")
|
421 |
+
elif self.path.startswith("r2://"):
|
422 |
+
_get_s3_client("r2")
|
423 |
+
|
424 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
425 |
+
read_item_content_futures = []
|
426 |
+
for read_item in plan.items:
|
427 |
+
read_item_content_futures.append(executor.submit(self._get_content_for_read, read_item))
|
428 |
+
read_item_content_results = []
|
429 |
+
for f in as_completed(read_item_content_futures):
|
430 |
+
try:
|
431 |
+
read_item_content_results.append(f.result())
|
432 |
+
except BaseException:
|
433 |
+
# NOTE: we might get an error here that can't be pickled, which causes a different failure
|
434 |
+
# later when PyTorch tries to reduce that error across ranks. So here we just make
|
435 |
+
# sure we're raising a simple error type that can be pickled.
|
436 |
+
raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
|
437 |
+
|
438 |
+
# Modified from `FileSystemReader.read_data()`
|
439 |
+
for read_item, content in read_item_content_results:
|
440 |
+
bytes = io.BytesIO(content)
|
441 |
+
bytes.seek(0)
|
442 |
+
if read_item.type == LoadItemType.BYTE_IO:
|
443 |
+
planner.load_bytes(read_item, bytes)
|
444 |
+
else:
|
445 |
+
tensor = cast(torch.Tensor, torch.load(bytes, map_location="cpu"))
|
446 |
+
tensor = narrow_tensor_by_index(tensor, read_item.storage_offsets, read_item.lengths)
|
447 |
+
target_tensor = planner.resolve_tensor(read_item).detach()
|
448 |
+
|
449 |
+
assert (
|
450 |
+
target_tensor.size() == tensor.size()
|
451 |
+
), f"req {read_item.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
|
452 |
+
target_tensor.copy_(tensor)
|
453 |
+
planner.commit_tensor(read_item, target_tensor)
|
454 |
+
|
455 |
+
fut: Future = Future()
|
456 |
+
fut.set_result(None)
|
457 |
+
return fut
|
458 |
+
|
459 |
+
def read_metadata(self) -> Metadata:
|
460 |
+
if self._metadata is None:
|
461 |
+
with resource_path(self.path, ".metadata", local_cache=self.cache).open("rb") as metadata_file:
|
462 |
+
self._metadata = pickle.load(metadata_file)
|
463 |
+
return self._metadata
|
464 |
+
|
465 |
+
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
|
466 |
+
del is_coordinator
|
467 |
+
self.storage_data = metadata.storage_data
|
468 |
+
assert self.storage_data is not None
|
469 |
+
|
470 |
+
def prepare_local_plan(self, plan: dist_cp.LoadPlan) -> dist_cp.LoadPlan:
|
471 |
+
return plan
|
472 |
+
|
473 |
+
def prepare_global_plan(self, global_plan: List[dist_cp.LoadPlan]) -> List[dist_cp.LoadPlan]:
|
474 |
+
return global_plan
|
475 |
+
|
476 |
+
|
477 |
+
class Checkpointer(metaclass=ABCMeta):
|
478 |
+
def __init__(self, cfg: TrainConfig, thread_count: Optional[int] = None):
|
479 |
+
self.cfg = cfg
|
480 |
+
self.thread_count = thread_count or default_thread_count()
|
481 |
+
|
482 |
+
@abstractmethod
|
483 |
+
def save_checkpoint(
|
484 |
+
self,
|
485 |
+
dir: PathOrStr,
|
486 |
+
fsdp_model: FSDP,
|
487 |
+
optim: Optimizer,
|
488 |
+
train_state: Dict[str, Any],
|
489 |
+
*,
|
490 |
+
upload_to: Optional[str] = None,
|
491 |
+
) -> None:
|
492 |
+
raise NotImplementedError
|
493 |
+
|
494 |
+
@abstractmethod
|
495 |
+
def restore_checkpoint(
|
496 |
+
self,
|
497 |
+
load_path: PathOrStr,
|
498 |
+
fsdp_model: FSDP,
|
499 |
+
optim: Optimizer,
|
500 |
+
*,
|
501 |
+
local_cache: Optional[PathOrStr] = None,
|
502 |
+
load_optimizer_state: bool = True,
|
503 |
+
) -> Dict[str, Any]:
|
504 |
+
"""
|
505 |
+
Restores a checkpoint to the model and optimizer. Returns the remaining trainer state.
|
506 |
+
"""
|
507 |
+
raise NotImplementedError
|
508 |
+
|
509 |
+
def unshard_checkpoint(
|
510 |
+
self,
|
511 |
+
load_path: PathOrStr,
|
512 |
+
*,
|
513 |
+
local_cache: Optional[PathOrStr] = None,
|
514 |
+
load_optimizer_state: bool = True,
|
515 |
+
load_trainer_state: bool = True,
|
516 |
+
device: Optional[torch.device] = None,
|
517 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
518 |
+
"""
|
519 |
+
Unshard a checkpoint.
|
520 |
+
|
521 |
+
Note this is not marked abstract because child classes are not required to implemented this.
|
522 |
+
"""
|
523 |
+
del load_path, local_cache, load_optimizer_state, load_trainer_state, device
|
524 |
+
raise NotImplementedError
|
525 |
+
|
526 |
+
@contextmanager
|
527 |
+
def _temporary_wd(self, dir: PathOrStr) -> Generator[Path, None, None]:
|
528 |
+
# Make sure checkpoint directory doesn't exist unless it's okay to overwrite it.
|
529 |
+
checkpoint_dir = Path(dir)
|
530 |
+
if not dir_is_empty(checkpoint_dir):
|
531 |
+
if self.cfg.save_overwrite:
|
532 |
+
if get_fs_local_rank() == 0:
|
533 |
+
shutil.rmtree(checkpoint_dir, ignore_errors=True)
|
534 |
+
else:
|
535 |
+
raise FileExistsError(checkpoint_dir)
|
536 |
+
# No need to mkdir here since we'll directly replace the temporary directory with
|
537 |
+
# this directory below.
|
538 |
+
barrier()
|
539 |
+
|
540 |
+
# Prepare temporary directory. We don't have to be as careful here, we can
|
541 |
+
# just remove it if it already exists.
|
542 |
+
checkpoint_dir_tmp = checkpoint_dir.with_name(checkpoint_dir.name + "-tmp")
|
543 |
+
if get_fs_local_rank() == 0:
|
544 |
+
shutil.rmtree(checkpoint_dir_tmp, ignore_errors=True)
|
545 |
+
checkpoint_dir_tmp.mkdir(exist_ok=True, parents=True)
|
546 |
+
|
547 |
+
barrier()
|
548 |
+
|
549 |
+
# Yield temporary directory for `.save_checkpoint()` to use.
|
550 |
+
yield checkpoint_dir_tmp
|
551 |
+
|
552 |
+
barrier()
|
553 |
+
|
554 |
+
# Finally if all went well replace the temporary directory with the actual
|
555 |
+
# checkpoint directory.
|
556 |
+
if get_fs_local_rank() == 0:
|
557 |
+
# Replace temp directory with target checkpoint directory.
|
558 |
+
try:
|
559 |
+
checkpoint_dir_tmp.replace(checkpoint_dir)
|
560 |
+
except FileNotFoundError:
|
561 |
+
# Caught when another (file-system) local rank 0 has already replaced the tmp directory.
|
562 |
+
# This can happen when nodes are saving to a common NFS drive but otherwise have distinct
|
563 |
+
# file-systems.
|
564 |
+
if not checkpoint_dir.exists():
|
565 |
+
raise
|
566 |
+
|
567 |
+
# In the cases where we're using a shared NFS drive between ranks to save checkpoints,
|
568 |
+
# replacing the temp directory with the final directory from rank 0 might not be immediately
|
569 |
+
# realized in the file systems of the other ranks.
|
570 |
+
# So we wait here across all ranks until that final checkpoint directory is visible.
|
571 |
+
wait_for(lambda: checkpoint_dir.exists(), "Waiting for checkpoint directory", timeout=10.0)
|
572 |
+
|
573 |
+
barrier()
|
574 |
+
|
575 |
+
def _save_config(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
|
576 |
+
if get_global_rank() == 0:
|
577 |
+
log.info("Saving config...")
|
578 |
+
self.cfg.save(config_path := Path(dir) / "config.yaml")
|
579 |
+
if upload_to is not None:
|
580 |
+
upload_target = f"{upload_to}/config.yaml"
|
581 |
+
log.info(f"Uploading {config_path} to {upload_target}")
|
582 |
+
upload(config_path, upload_target, save_overwrite=self.cfg.save_overwrite)
|
583 |
+
|
584 |
+
|
585 |
+
class FullCheckpointer(Checkpointer):
|
586 |
+
"""
|
587 |
+
A :class:`Checkpointer` that saves a single full model and optimizer state dictionary.
|
588 |
+
"""
|
589 |
+
|
590 |
+
def save_checkpoint(
|
591 |
+
self,
|
592 |
+
dir: PathOrStr,
|
593 |
+
fsdp_model: FSDP,
|
594 |
+
optim: Optimizer,
|
595 |
+
trainer_state: Dict[str, Any],
|
596 |
+
*,
|
597 |
+
upload_to: Optional[str] = None,
|
598 |
+
) -> None:
|
599 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
600 |
+
with FSDP.state_dict_type(
|
601 |
+
fsdp_model,
|
602 |
+
state_dict_type=StateDictType.FULL_STATE_DICT,
|
603 |
+
state_dict_config=FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
|
604 |
+
optim_state_dict_config=FullOptimStateDictConfig(rank0_only=True, offload_to_cpu=True),
|
605 |
+
):
|
606 |
+
# We'll write the model and optimizer state dicts individually to reduce (CPU) memory consumption.
|
607 |
+
# First the model state.
|
608 |
+
model_state_dict = fsdp_model.state_dict()
|
609 |
+
if get_global_rank() == 0:
|
610 |
+
log.info("Saving model state...")
|
611 |
+
save_state_dict(
|
612 |
+
checkpoint_dir,
|
613 |
+
"model.pt",
|
614 |
+
model_state_dict,
|
615 |
+
upload_to=upload_to,
|
616 |
+
save_overwrite=self.cfg.save_overwrite,
|
617 |
+
synchronize=False,
|
618 |
+
)
|
619 |
+
del model_state_dict
|
620 |
+
barrier()
|
621 |
+
|
622 |
+
# Then the optimizer state.
|
623 |
+
optim_state_dict = FSDP.optim_state_dict(fsdp_model, optim)
|
624 |
+
if get_global_rank() == 0:
|
625 |
+
log.info("Saving optim state...")
|
626 |
+
save_state_dict(
|
627 |
+
checkpoint_dir,
|
628 |
+
"optim.pt",
|
629 |
+
optim_state_dict,
|
630 |
+
upload_to=upload_to,
|
631 |
+
save_overwrite=self.cfg.save_overwrite,
|
632 |
+
synchronize=False,
|
633 |
+
)
|
634 |
+
del optim_state_dict
|
635 |
+
barrier()
|
636 |
+
|
637 |
+
# Save trainer state.
|
638 |
+
if get_global_rank() == 0:
|
639 |
+
log.info("Saving trainer state...")
|
640 |
+
save_state_dict(
|
641 |
+
checkpoint_dir,
|
642 |
+
"train.pt",
|
643 |
+
trainer_state,
|
644 |
+
upload_to=upload_to,
|
645 |
+
save_overwrite=self.cfg.save_overwrite,
|
646 |
+
synchronize=False,
|
647 |
+
)
|
648 |
+
# Save config.
|
649 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
650 |
+
|
651 |
+
def restore_checkpoint(
|
652 |
+
self,
|
653 |
+
load_path: PathOrStr,
|
654 |
+
fsdp_model: FSDP,
|
655 |
+
optim: Optimizer,
|
656 |
+
*,
|
657 |
+
local_cache: Optional[PathOrStr] = None,
|
658 |
+
load_optimizer_state: bool = True,
|
659 |
+
) -> Dict[str, Any]:
|
660 |
+
with FSDP.state_dict_type(
|
661 |
+
fsdp_model,
|
662 |
+
state_dict_type=StateDictType.FULL_STATE_DICT,
|
663 |
+
state_dict_config=FullStateDictConfig(rank0_only=False, offload_to_cpu=True),
|
664 |
+
optim_state_dict_config=FullOptimStateDictConfig(rank0_only=False, offload_to_cpu=True),
|
665 |
+
):
|
666 |
+
with torch.no_grad():
|
667 |
+
# fill everything with NaN, so we can check afterwards that every parameter has been restored
|
668 |
+
for module_name, module in fsdp_model.named_modules():
|
669 |
+
if not isinstance(module, FSDP):
|
670 |
+
continue
|
671 |
+
for param in module.params:
|
672 |
+
param.fill_(torch.nan)
|
673 |
+
|
674 |
+
# restore params from checkpoint
|
675 |
+
state_dict_to_load = load_state_dict(
|
676 |
+
load_path, "model.pt", local_cache=local_cache, map_location="cpu"
|
677 |
+
)
|
678 |
+
(
|
679 |
+
state_dict_to_load,
|
680 |
+
og_keys_to_new,
|
681 |
+
) = fsdp_model._fsdp_wrapped_module._make_state_dict_compatible(state_dict_to_load)
|
682 |
+
|
683 |
+
for module_name, module in fsdp_model.named_modules():
|
684 |
+
if not isinstance(module, FSDP):
|
685 |
+
continue
|
686 |
+
for param in module.params:
|
687 |
+
assert param._is_flat_param
|
688 |
+
for fqn, spi in zip(param._fqns, param._shard_param_infos):
|
689 |
+
if not spi.in_shard:
|
690 |
+
continue
|
691 |
+
key = f"{module_name}.{fqn}"
|
692 |
+
key = key.replace("_fsdp_wrapped_module.", "")
|
693 |
+
key = key.lstrip(".")
|
694 |
+
t = state_dict_to_load[key]
|
695 |
+
t = t.flatten()
|
696 |
+
param[spi.offset_in_shard : spi.offset_in_shard + spi.numel_in_shard].copy_(
|
697 |
+
t[spi.intra_param_start_idx : spi.intra_param_end_idx + 1]
|
698 |
+
)
|
699 |
+
|
700 |
+
# make sure that every parameter has been restored
|
701 |
+
for module_name, module in fsdp_model.named_modules():
|
702 |
+
if not isinstance(module, FSDP):
|
703 |
+
continue
|
704 |
+
for param in module.params:
|
705 |
+
if torch.isnan(param).any():
|
706 |
+
raise ValueError(
|
707 |
+
f"Module '{module_name}' contains NaNs, this is likely a bug restoring from full checkpoints"
|
708 |
+
)
|
709 |
+
|
710 |
+
# Load optimizer state.
|
711 |
+
if load_optimizer_state:
|
712 |
+
optim_state_dict_to_load = load_state_dict(
|
713 |
+
load_path, "optim.pt", local_cache=local_cache, map_location="cpu"
|
714 |
+
)
|
715 |
+
optim_state_dict_to_load = self._make_optim_state_dict_compatible(
|
716 |
+
optim_state_dict_to_load,
|
717 |
+
og_keys_to_new,
|
718 |
+
)
|
719 |
+
load_fsdp_optim_state(fsdp_model, optim, optim_state_dict_to_load)
|
720 |
+
del optim_state_dict_to_load
|
721 |
+
|
722 |
+
# Load other state.
|
723 |
+
try:
|
724 |
+
trainer_state = load_state_dict(load_path, "train.pt", local_cache=local_cache)
|
725 |
+
except FileNotFoundError:
|
726 |
+
# for backwards compatibility
|
727 |
+
trainer_state = load_state_dict(load_path, "other.pt", local_cache=local_cache)
|
728 |
+
barrier()
|
729 |
+
return trainer_state
|
730 |
+
|
731 |
+
def _make_optim_state_dict_compatible(
|
732 |
+
self, optim_state_dict: Dict[str, Any], og_keys_to_new: Dict[str, Set[str]]
|
733 |
+
) -> Dict[str, Any]:
|
734 |
+
# This state dict comes in two forms: one where the state keys are integers and one where the
|
735 |
+
# keys are fully qualified parameter names. The latter case is easier to deal with here so we
|
736 |
+
# first transform the integer key form into the FQN key form.
|
737 |
+
if isinstance(optim_state_dict["param_groups"][0]["params"][0], int):
|
738 |
+
id_to_fqn: Dict[int, str] = {}
|
739 |
+
for group in optim_state_dict["param_groups"]:
|
740 |
+
new_param_names = []
|
741 |
+
for fqn, id in zip(group["param_names"], group["params"]):
|
742 |
+
fqn = fqn.replace("_fsdp_wrapped_module.", "")
|
743 |
+
id_to_fqn[id] = fqn
|
744 |
+
new_param_names.append(fqn)
|
745 |
+
group["param_names"] = new_param_names
|
746 |
+
group["params"] = new_param_names
|
747 |
+
for id in list(optim_state_dict["state"].keys()):
|
748 |
+
optim_state_dict["state"][id_to_fqn[id]] = optim_state_dict["state"].pop(id)
|
749 |
+
else:
|
750 |
+
# Otherwise we still want to clean up the param names to remove the "_fsdp_wrapped_module." prefix.
|
751 |
+
for group in optim_state_dict["param_groups"]:
|
752 |
+
group["param_names"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["param_names"]]
|
753 |
+
group["params"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["params"]]
|
754 |
+
assert group["param_names"] == group["params"]
|
755 |
+
for key in list(optim_state_dict["state"].keys()):
|
756 |
+
optim_state_dict["state"][key.replace("_fsdp_wrapped_module.", "")] = optim_state_dict[
|
757 |
+
"state"
|
758 |
+
].pop(key)
|
759 |
+
|
760 |
+
# Now we can transform the state dict by renaming parameters according to `og_keys_to_new`.
|
761 |
+
# First fix param names in the state.
|
762 |
+
for og_key, new_keys in og_keys_to_new.items():
|
763 |
+
og_state = optim_state_dict["state"].pop(og_key, None)
|
764 |
+
if og_state is None:
|
765 |
+
continue
|
766 |
+
for i, new_key in enumerate(new_keys):
|
767 |
+
if i == len(new_keys) - 1:
|
768 |
+
optim_state_dict["state"][new_key] = og_state
|
769 |
+
else:
|
770 |
+
optim_state_dict["state"][new_key] = deepcopy(og_state)
|
771 |
+
# Now fix param names in the param groups.
|
772 |
+
for group in optim_state_dict["param_groups"]:
|
773 |
+
og_names = group["params"]
|
774 |
+
new_names = []
|
775 |
+
for og_key in og_names:
|
776 |
+
for new_key in og_keys_to_new[og_key]:
|
777 |
+
new_names.append(new_key)
|
778 |
+
group["params"] = new_names
|
779 |
+
group["param_names"] = new_names
|
780 |
+
|
781 |
+
return optim_state_dict
|
782 |
+
|
783 |
+
def load_checkpoint(
|
784 |
+
self,
|
785 |
+
load_path: PathOrStr,
|
786 |
+
*,
|
787 |
+
local_cache: Optional[PathOrStr] = None,
|
788 |
+
load_optimizer_state: bool = True,
|
789 |
+
device: Optional[torch.device] = None,
|
790 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]]]:
|
791 |
+
device = device if device is not None else torch.device("cpu")
|
792 |
+
model_state = load_state_dict(load_path, "model.pt", local_cache=local_cache, map_location=device) # type: ignore
|
793 |
+
optim_state = None
|
794 |
+
if load_optimizer_state:
|
795 |
+
optim_state = load_state_dict(load_path, "optim.pt", local_cache=local_cache, map_location=device) # type: ignore
|
796 |
+
return model_state, optim_state
|
797 |
+
|
798 |
+
|
799 |
+
class TorchNewStyleShardedCheckpointer(Checkpointer):
|
800 |
+
"""
|
801 |
+
A sharded :class:`Checkpointer` that uses PyTorch's new distributed checkpointing functionality.
|
802 |
+
"""
|
803 |
+
|
804 |
+
def save_checkpoint(
|
805 |
+
self,
|
806 |
+
dir: PathOrStr,
|
807 |
+
fsdp_model: FSDP,
|
808 |
+
optim: Optimizer,
|
809 |
+
trainer_state: Dict[str, Any],
|
810 |
+
*,
|
811 |
+
upload_to: Optional[str] = None,
|
812 |
+
) -> None:
|
813 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
814 |
+
# Save model and optim state.
|
815 |
+
save_fsdp_model_and_optim_state(
|
816 |
+
checkpoint_dir,
|
817 |
+
fsdp_model,
|
818 |
+
optim,
|
819 |
+
upload_to=upload_to,
|
820 |
+
save_overwrite=self.cfg.save_overwrite,
|
821 |
+
)
|
822 |
+
|
823 |
+
# Save trainer state.
|
824 |
+
log.info("Saving trainer state...")
|
825 |
+
save_state_dict(
|
826 |
+
checkpoint_dir,
|
827 |
+
f"train/rank{get_global_rank()}.pt",
|
828 |
+
trainer_state,
|
829 |
+
upload_to=upload_to,
|
830 |
+
save_overwrite=self.cfg.save_overwrite,
|
831 |
+
)
|
832 |
+
|
833 |
+
# Save config.
|
834 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
835 |
+
|
836 |
+
def restore_checkpoint(
|
837 |
+
self,
|
838 |
+
load_path: PathOrStr,
|
839 |
+
fsdp_model: FSDP,
|
840 |
+
optim: Optimizer,
|
841 |
+
*,
|
842 |
+
local_cache: Optional[PathOrStr] = None,
|
843 |
+
load_optimizer_state: bool = True,
|
844 |
+
) -> Dict[str, Any]:
|
845 |
+
# Load model and optimizer state in place.
|
846 |
+
log.info("Loading model and optimizer state...")
|
847 |
+
load_fsdp_model_and_optim_state(
|
848 |
+
load_path,
|
849 |
+
fsdp_model,
|
850 |
+
optim,
|
851 |
+
local_cache=local_cache,
|
852 |
+
load_optimizer_state=load_optimizer_state,
|
853 |
+
)
|
854 |
+
|
855 |
+
# Load trainer state dict.
|
856 |
+
log.info("Loading trainer state...")
|
857 |
+
try:
|
858 |
+
trainer_state = load_state_dict(
|
859 |
+
load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache
|
860 |
+
)
|
861 |
+
except FileNotFoundError:
|
862 |
+
# Fall back to rank 0 train state.
|
863 |
+
# This can happen when we're restoring a checkpoint with a different world size.
|
864 |
+
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
|
865 |
+
barrier()
|
866 |
+
return trainer_state
|
867 |
+
|
868 |
+
|
869 |
+
class TorchLegacyShardedCheckpointer(Checkpointer):
|
870 |
+
"""
|
871 |
+
A sharded :class:`Checkpointer` that just uses `torch.save()` with extra logic for handling FSDP model
|
872 |
+
and optim state.
|
873 |
+
|
874 |
+
The world size must be kept consistent when using this checkpointer.
|
875 |
+
"""
|
876 |
+
|
877 |
+
def save_checkpoint(
|
878 |
+
self,
|
879 |
+
dir: PathOrStr,
|
880 |
+
fsdp_model: FSDP,
|
881 |
+
optim: Optimizer,
|
882 |
+
trainer_state: Dict[str, Any],
|
883 |
+
*,
|
884 |
+
upload_to: Optional[str] = None,
|
885 |
+
) -> None:
|
886 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
887 |
+
with FSDP.state_dict_type(
|
888 |
+
fsdp_model,
|
889 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
890 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
891 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
892 |
+
):
|
893 |
+
state_dict = {
|
894 |
+
"model": fsdp_model.state_dict(),
|
895 |
+
"optim": FSDP.optim_state_dict(fsdp_model, optim),
|
896 |
+
**trainer_state,
|
897 |
+
}
|
898 |
+
save_state_dict(
|
899 |
+
checkpoint_dir,
|
900 |
+
f"rank{get_global_rank()}.pt",
|
901 |
+
state_dict,
|
902 |
+
upload_to=upload_to,
|
903 |
+
save_overwrite=self.cfg.save_overwrite,
|
904 |
+
)
|
905 |
+
|
906 |
+
# Save config.
|
907 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
908 |
+
|
909 |
+
def restore_checkpoint(
|
910 |
+
self,
|
911 |
+
load_path: PathOrStr,
|
912 |
+
fsdp_model: FSDP,
|
913 |
+
optim: Optimizer,
|
914 |
+
*,
|
915 |
+
local_cache: Optional[PathOrStr] = None,
|
916 |
+
load_optimizer_state: bool = True,
|
917 |
+
) -> Dict[str, Any]:
|
918 |
+
with FSDP.state_dict_type(
|
919 |
+
fsdp_model,
|
920 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
921 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
922 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
923 |
+
):
|
924 |
+
# Deserialize state dict.
|
925 |
+
state_dict = load_state_dict(
|
926 |
+
load_path, f"rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
927 |
+
)
|
928 |
+
|
929 |
+
# Load model and optimizer state.
|
930 |
+
log.info("Loading model state...")
|
931 |
+
fsdp_model.load_state_dict(state_dict["model"])
|
932 |
+
del state_dict["model"]
|
933 |
+
if load_optimizer_state:
|
934 |
+
log.info("Loading optimizer state...")
|
935 |
+
load_fsdp_optim_state(fsdp_model, optim, state_dict["optim"])
|
936 |
+
del state_dict["optim"]
|
937 |
+
|
938 |
+
barrier()
|
939 |
+
return state_dict
|
940 |
+
|
941 |
+
def unshard_checkpoint(
|
942 |
+
self,
|
943 |
+
load_path: PathOrStr,
|
944 |
+
*,
|
945 |
+
local_cache: Optional[PathOrStr] = None,
|
946 |
+
load_optimizer_state: bool = True,
|
947 |
+
load_trainer_state: bool = True,
|
948 |
+
device: Optional[torch.device] = None,
|
949 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
950 |
+
assert local_cache is None, "this method currently only supports local files"
|
951 |
+
full_state_dict = self._unshard(load_path, device or torch.device("cpu"), skip_keys={"rng"})
|
952 |
+
model_state = full_state_dict.pop("model")
|
953 |
+
optim_state = full_state_dict.pop("optim")
|
954 |
+
return (
|
955 |
+
model_state,
|
956 |
+
optim_state if load_optimizer_state else None,
|
957 |
+
full_state_dict if load_trainer_state else None,
|
958 |
+
)
|
959 |
+
|
960 |
+
def _copy_sharded_tensors_to_shared_mem(self, state: Dict, world_size: int, rank: int, key: Tuple):
|
961 |
+
key = tuple() if key is None else key
|
962 |
+
if isinstance(state, (list, tuple, set)):
|
963 |
+
for i, sub_state in enumerate(state):
|
964 |
+
self._copy_sharded_tensors_to_shared_mem(sub_state, world_size, rank, key + (i,))
|
965 |
+
elif isinstance(state, dict):
|
966 |
+
for name in state.keys():
|
967 |
+
self._copy_sharded_tensors_to_shared_mem(state[name], world_size, rank, key + (name,))
|
968 |
+
elif isinstance(state, ShardedTensor):
|
969 |
+
self._copy_sharded_tensor_to_shared_mem(state, world_size, rank, key)
|
970 |
+
return
|
971 |
+
else:
|
972 |
+
return
|
973 |
+
|
974 |
+
def _get_shard_placement_and_rank_sizes(
|
975 |
+
self, shards_metadata: List[ShardMetadata], world_size: int
|
976 |
+
) -> Tuple[Dict[ShardMetadata, Tuple[int, int]], List[int]]:
|
977 |
+
def shard_size(shard_md):
|
978 |
+
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
|
979 |
+
|
980 |
+
rank_sizes = [0 for _ in range(world_size)]
|
981 |
+
shard_placement: Dict[ShardMetadata, Tuple[int, int]] = {}
|
982 |
+
for shard_md in shards_metadata:
|
983 |
+
shard_rank = cast(_remote_device, shard_md.placement).rank()
|
984 |
+
assert shard_rank is not None
|
985 |
+
if shard_rank >= world_size:
|
986 |
+
raise RuntimeError(f"Shard rank {shard_rank} exceeds world size {world_size}")
|
987 |
+
|
988 |
+
shard_placement[shard_md] = (shard_rank, rank_sizes[shard_rank])
|
989 |
+
rank_sizes[shard_rank] += shard_size(shard_md)
|
990 |
+
|
991 |
+
return shard_placement, rank_sizes
|
992 |
+
|
993 |
+
def _copy_sharded_tensor_to_shared_mem(
|
994 |
+
self, sharded_tensor: ShardedTensor, world_size: int, rank: int, key: Tuple
|
995 |
+
) -> Any:
|
996 |
+
shard0_md = sharded_tensor.metadata()
|
997 |
+
shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
|
998 |
+
shard0_md.shards_metadata, world_size
|
999 |
+
)
|
1000 |
+
|
1001 |
+
rank_size = rank_sizes[rank]
|
1002 |
+
assert rank_size >= 0
|
1003 |
+
if rank_size == 0:
|
1004 |
+
return
|
1005 |
+
|
1006 |
+
assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
|
1007 |
+
numpy_type = np.float32
|
1008 |
+
|
1009 |
+
sharded_memory_name = "-".join(key + (str(rank),))
|
1010 |
+
|
1011 |
+
shm = shared_memory.SharedMemory(
|
1012 |
+
create=True, size=rank_size * np.dtype(numpy_type).itemsize, name=sharded_memory_name
|
1013 |
+
)
|
1014 |
+
np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
|
1015 |
+
|
1016 |
+
for local_shard in sharded_tensor.local_shards():
|
1017 |
+
shard_rank = cast(_remote_device, local_shard.metadata.placement).rank()
|
1018 |
+
assert shard_rank == rank
|
1019 |
+
|
1020 |
+
src = local_shard.tensor.flatten()
|
1021 |
+
shard_offset = shard_placement[local_shard.metadata][1]
|
1022 |
+
|
1023 |
+
np_arr[shard_offset : shard_offset + src.numel()] = src.numpy()
|
1024 |
+
|
1025 |
+
shm.close()
|
1026 |
+
|
1027 |
+
def _copy_sharded_data_to_shared_mem(self, world_size: int, shard_filepath: Path):
|
1028 |
+
shard_number = int(shard_filepath.name[4:-3])
|
1029 |
+
log.info("Starting unsharding shard number %d to shared memory", shard_number)
|
1030 |
+
|
1031 |
+
with self._patch_sharded_tensor_load():
|
1032 |
+
shard = torch.load(shard_filepath, map_location="cpu")
|
1033 |
+
log.debug("Done loading shard number %d", shard_number)
|
1034 |
+
|
1035 |
+
self._copy_sharded_tensors_to_shared_mem(
|
1036 |
+
shard, world_size, shard_number, (str(shard_filepath.parent).replace("/", "_"),)
|
1037 |
+
)
|
1038 |
+
log.info("Done unsharding shard number %d to shared memory", shard_number)
|
1039 |
+
|
1040 |
+
def _unshard_using_sharded_mem(
|
1041 |
+
self, state: Any, world_size: int, device: torch.device, shard_dir: PathOrStr
|
1042 |
+
) -> Any:
|
1043 |
+
return self._unshard_state_using_shared_mem(state, world_size, device, (str(shard_dir).replace("/", "_"),))
|
1044 |
+
|
1045 |
+
def _unshard_state_using_shared_mem(
|
1046 |
+
self, state: Any, world_size: int, device: torch.device, key: Tuple
|
1047 |
+
) -> Any:
|
1048 |
+
if isinstance(state, (list, tuple, set)):
|
1049 |
+
return state.__class__(
|
1050 |
+
self._unshard_state_using_shared_mem(sub_state, world_size, device, key + (i,))
|
1051 |
+
for i, sub_state in enumerate(state)
|
1052 |
+
)
|
1053 |
+
elif isinstance(state, dict):
|
1054 |
+
return {
|
1055 |
+
name: self._unshard_state_using_shared_mem(state[name], world_size, device, key + (name,))
|
1056 |
+
for name in state.keys()
|
1057 |
+
}
|
1058 |
+
elif isinstance(state, ShardedTensor):
|
1059 |
+
return self._unshard_tensor_using_shared_mem(state, world_size, device, key)
|
1060 |
+
elif isinstance(state, torch.Tensor):
|
1061 |
+
return state.to(device=device)
|
1062 |
+
else:
|
1063 |
+
return state
|
1064 |
+
|
1065 |
+
def _unshard_tensor_using_shared_mem(
|
1066 |
+
self, sharded_tensor: ShardedTensor, world_size: int, device: torch.device, key: Tuple
|
1067 |
+
) -> torch.Tensor:
|
1068 |
+
shard0_md = sharded_tensor.metadata()
|
1069 |
+
|
1070 |
+
def shard_size(shard_md):
|
1071 |
+
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
|
1072 |
+
|
1073 |
+
shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
|
1074 |
+
shard0_md.shards_metadata, world_size
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
|
1078 |
+
numpy_type = np.float32
|
1079 |
+
|
1080 |
+
out = torch.empty(
|
1081 |
+
*sharded_tensor.metadata().size, dtype=sharded_tensor.metadata().tensor_properties.dtype, device=device
|
1082 |
+
)
|
1083 |
+
dims = len(sharded_tensor.metadata().size)
|
1084 |
+
for shard_md, (rank, rank_offset) in shard_placement.items():
|
1085 |
+
if rank >= world_size:
|
1086 |
+
raise RuntimeError(f"Shard rank {rank} exceeds world size {world_size}")
|
1087 |
+
|
1088 |
+
sharded_memory_name = "-".join(key + (str(rank),))
|
1089 |
+
shm = shared_memory.SharedMemory(name=sharded_memory_name)
|
1090 |
+
|
1091 |
+
rank_size = rank_sizes[rank]
|
1092 |
+
assert rank_size >= 0
|
1093 |
+
if rank_size == 0:
|
1094 |
+
continue
|
1095 |
+
|
1096 |
+
np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
|
1097 |
+
|
1098 |
+
tensor = torch.from_numpy(np_arr)[rank_offset : rank_offset + shard_size(shard_md)]
|
1099 |
+
tensor = tensor.view(shard_md.shard_sizes)
|
1100 |
+
|
1101 |
+
out_narrow_view = out
|
1102 |
+
for dim in range(dims):
|
1103 |
+
out_narrow_view = out_narrow_view.narrow(
|
1104 |
+
dim,
|
1105 |
+
shard_md.shard_offsets[dim],
|
1106 |
+
shard_md.shard_sizes[dim],
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
out_narrow_view.copy_(tensor)
|
1110 |
+
|
1111 |
+
shm.close()
|
1112 |
+
shm.unlink()
|
1113 |
+
|
1114 |
+
return out
|
1115 |
+
|
1116 |
+
@contextmanager
|
1117 |
+
def _patch_sharded_tensor_load(self):
|
1118 |
+
"""
|
1119 |
+
Monkeypatch for torch's ShardedTensor, so we can unpickle without having torch.distributed set up.
|
1120 |
+
"""
|
1121 |
+
|
1122 |
+
def _rebuild_from_type_v2_monkey(func, new_type, args, state):
|
1123 |
+
ret = func(*args)
|
1124 |
+
if type(ret) is not new_type:
|
1125 |
+
ret = ret.as_subclass(new_type)
|
1126 |
+
|
1127 |
+
# Shortcut the construction of ShardedTensor
|
1128 |
+
# This is in the top 5 of my worst hacks.
|
1129 |
+
if isinstance(ret, ShardedTensor):
|
1130 |
+
ret._local_shards, ret._metadata, _, ret._sharding_spec, ret._init_rrefs = state
|
1131 |
+
return ret
|
1132 |
+
|
1133 |
+
# The rest of this function ought to be in the top 5 of somebody else's worst hacks.
|
1134 |
+
# Tensor does define __setstate__ even though it doesn't define
|
1135 |
+
# __getstate__. So only use __setstate__ if it is NOT the one defined
|
1136 |
+
# on Tensor
|
1137 |
+
if getattr(ret.__class__, "__setstate__", torch.Tensor.__setstate__) is not torch.Tensor.__setstate__:
|
1138 |
+
ret.__setstate__(state)
|
1139 |
+
else:
|
1140 |
+
ret = torch._utils._set_obj_state(ret, state)
|
1141 |
+
return ret
|
1142 |
+
|
1143 |
+
original_rebuild_from_type_v2 = torch._tensor._rebuild_from_type_v2
|
1144 |
+
try:
|
1145 |
+
torch._tensor._rebuild_from_type_v2 = _rebuild_from_type_v2_monkey
|
1146 |
+
yield
|
1147 |
+
finally:
|
1148 |
+
torch._tensor._rebuild_from_type_v2 = original_rebuild_from_type_v2
|
1149 |
+
|
1150 |
+
def _unshard(self, input_dir: PathOrStr, device: torch.device, skip_keys: Optional[Set[str]] = None):
|
1151 |
+
"""
|
1152 |
+
The current unsharding implementation consists of:
|
1153 |
+
|
1154 |
+
1. Loading each shard on a separate process and copying their sharded tensors to shared memory.
|
1155 |
+
2. Loading 1 shard on the main process as a base unsharded object.
|
1156 |
+
3. Using the sharded tensors in shared memory to populate the base unsharded object.
|
1157 |
+
|
1158 |
+
This implementation replaced a prior implementation that instead loaded
|
1159 |
+
all shards using threads, because that implementation turned out to
|
1160 |
+
be extremely slow (e.g. 6+ hours) sometimes when the world size was 1024.
|
1161 |
+
The current implementation is slower than the old one in many scenarios,
|
1162 |
+
but is significantly faster in the above mentioned case (e.g. 30 minutes)
|
1163 |
+
if there are enough CPUs.
|
1164 |
+
"""
|
1165 |
+
|
1166 |
+
input_dir = Path(input_dir)
|
1167 |
+
skip_keys = skip_keys or set()
|
1168 |
+
|
1169 |
+
shard_filepaths = list(input_dir.glob("rank*.pt"))
|
1170 |
+
world_size = len(shard_filepaths)
|
1171 |
+
if world_size == 0:
|
1172 |
+
raise RuntimeError("No shards found for unsharding")
|
1173 |
+
|
1174 |
+
log.info("Number of shards: %d", world_size)
|
1175 |
+
shard_size_gb = shard_filepaths[0].stat().st_size / (1024 * 1024 * 1024)
|
1176 |
+
min_ram_required_estimate_gb = shard_size_gb * world_size
|
1177 |
+
log.info(
|
1178 |
+
"Shards are %.2fGB each, at least %.2fGB RAM is required", shard_size_gb, min_ram_required_estimate_gb
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
log.info("Copying sharded tensors to shared memory using multiple processes")
|
1182 |
+
# Copy sharded data to shared memory using multiple processes, so this process can load
|
1183 |
+
# from memory rather than disk. We spawn a new process instead of forking since shared memory
|
1184 |
+
# appears to get deleted when forked processes end for some reason.
|
1185 |
+
executor = ProcessPoolExecutor(
|
1186 |
+
mp_context=mp.get_context("spawn"), initializer=util.prepare_cli_environment
|
1187 |
+
)
|
1188 |
+
futures = []
|
1189 |
+
for shard_filepath in shard_filepaths:
|
1190 |
+
shard_rank = int(shard_filepath.name[4:-3])
|
1191 |
+
|
1192 |
+
if shard_rank >= world_size:
|
1193 |
+
raise RuntimeError(
|
1194 |
+
f"Shard rank {shard_rank} of file {shard_filepath} exceeds world size {world_size}"
|
1195 |
+
)
|
1196 |
+
|
1197 |
+
futures.append(executor.submit(self._copy_sharded_data_to_shared_mem, world_size, shard_filepath))
|
1198 |
+
|
1199 |
+
for f in as_completed(futures):
|
1200 |
+
f.result()
|
1201 |
+
executor.shutdown()
|
1202 |
+
|
1203 |
+
log.info("Loading a shard on the main process to be unsharded state")
|
1204 |
+
with self._patch_sharded_tensor_load():
|
1205 |
+
state = torch.load(shard_filepaths[0], map_location="cpu")
|
1206 |
+
|
1207 |
+
for key in skip_keys:
|
1208 |
+
if key in state:
|
1209 |
+
del state[key]
|
1210 |
+
|
1211 |
+
log.info("Unsharding from %d shards ...", world_size)
|
1212 |
+
return self._unshard_using_sharded_mem(state, world_size, device, input_dir)
|
1213 |
+
|
1214 |
+
|
1215 |
+
@dataclass
|
1216 |
+
class _LocalShardedCheckpointerMetadata(BaseConfig):
|
1217 |
+
world_size: int = field(default_factory=get_world_size)
|
1218 |
+
|
1219 |
+
|
1220 |
+
@dataclass
|
1221 |
+
class _FlatParamShard:
|
1222 |
+
full_shape: torch.Size
|
1223 |
+
shard_offsets: Tuple[int, int]
|
1224 |
+
shard_data: Optional[torch.Tensor]
|
1225 |
+
|
1226 |
+
def copy_into(self, full_tensor: torch.Tensor) -> None:
|
1227 |
+
assert self.shard_data is not None
|
1228 |
+
full_tensor_shard_view = full_tensor.view(-1)[self.shard_offsets[0] : self.shard_offsets[1] + 1]
|
1229 |
+
assert self.shard_data.shape == full_tensor_shard_view.shape
|
1230 |
+
full_tensor_shard_view.copy_(self.shard_data)
|
1231 |
+
|
1232 |
+
|
1233 |
+
class LocalShardedCheckpointer(Checkpointer):
|
1234 |
+
"""
|
1235 |
+
A sharded :class:`Checkpointer` that directly saves the local FSDP flat params data.
|
1236 |
+
The optimizer state is saved directly with `torch.save()` without reformatting via FSDP methods.
|
1237 |
+
|
1238 |
+
The world size must be kept consistent when using this checkpointer. However, you can easily
|
1239 |
+
reconstruct a full unsharded model and/or optimizer state dictionary from a single Python process
|
1240 |
+
using :meth:`unshard_checkpoint()` (no distributed initialization required).
|
1241 |
+
"""
|
1242 |
+
|
1243 |
+
# These correspond to metadata attributes on `torch.distributed.fsdp.flat_param.FlatParameter`.
|
1244 |
+
_FLAT_PARAM_METADATA_TO_SAVE = (
|
1245 |
+
"_fqns",
|
1246 |
+
"_shard_param_offsets",
|
1247 |
+
"_shard_indices",
|
1248 |
+
"_numels",
|
1249 |
+
"_numels_with_padding",
|
1250 |
+
"_shapes",
|
1251 |
+
"_shard_numel_padded",
|
1252 |
+
"_shard_param_infos",
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
def _fsdp_modules(self, fsdp_model: FSDP) -> List[Tuple[str, FSDP]]:
|
1256 |
+
"""
|
1257 |
+
Returns a list of FSDP modules with their FQN.
|
1258 |
+
"""
|
1259 |
+
modules = []
|
1260 |
+
for name, module in fsdp_model.named_modules():
|
1261 |
+
if isinstance(module, FSDP):
|
1262 |
+
modules.append((name, module))
|
1263 |
+
return modules
|
1264 |
+
|
1265 |
+
def _prepare_fsdp_model(self, fsdp_model: FSDP) -> None:
|
1266 |
+
from torch.distributed.fsdp._runtime_utils import _lazy_init
|
1267 |
+
|
1268 |
+
# TODO (epwalsh): I'm not sure if this is necessary, but this is what PyTorch does before saving/loading
|
1269 |
+
# an FSDP state dict through the built-in methods.
|
1270 |
+
if torch.cuda.is_available():
|
1271 |
+
torch.cuda.synchronize()
|
1272 |
+
_lazy_init(fsdp_model, fsdp_model)
|
1273 |
+
|
1274 |
+
def _fsdp_handles(self, fsdp_model: FSDP) -> List[FlatParamHandle]:
|
1275 |
+
if version.parse(torch.__version__) < version.parse("2.1.0"):
|
1276 |
+
return fsdp_model._handles # type: ignore
|
1277 |
+
elif version.parse(torch.__version__) < version.parse("2.3.0"):
|
1278 |
+
# Handle could be None if the FSDP wrapper doesn't manage any parameters.
|
1279 |
+
if hasattr(fsdp_model, "_handle") and fsdp_model._handle is not None:
|
1280 |
+
return [fsdp_model._handle] # type: ignore
|
1281 |
+
else:
|
1282 |
+
return []
|
1283 |
+
else:
|
1284 |
+
# Need to verify FSDP internals with newer versions.
|
1285 |
+
raise NotImplementedError
|
1286 |
+
|
1287 |
+
@torch.no_grad()
|
1288 |
+
def _get_flat_param_state_to_save(self, fsdp_model: FSDP) -> Dict[str, Any]:
|
1289 |
+
self._prepare_fsdp_model(fsdp_model)
|
1290 |
+
module_data = []
|
1291 |
+
for module_fqn, fsdp_module in self._fsdp_modules(fsdp_model):
|
1292 |
+
handle_data = []
|
1293 |
+
for handle in self._fsdp_handles(fsdp_module):
|
1294 |
+
data: Dict[str, Any] = {}
|
1295 |
+
# This is a `FlatParameter` instance.
|
1296 |
+
# See `torch.distributed.fsdp.flat_param` for the API.
|
1297 |
+
flat_param = handle.flat_param
|
1298 |
+
data["flat_param.data"] = flat_param.detach()
|
1299 |
+
for key in self._FLAT_PARAM_METADATA_TO_SAVE:
|
1300 |
+
if hasattr(flat_param, key):
|
1301 |
+
data[f"flat_param.{key}"] = getattr(flat_param, key)
|
1302 |
+
handle_data.append(data)
|
1303 |
+
module_data.append({"handles": handle_data, "name": module_fqn})
|
1304 |
+
return {"modules": module_data}
|
1305 |
+
|
1306 |
+
@torch.no_grad()
|
1307 |
+
def _load_flat_param_state(self, fsdp_model: FSDP, model_state: Dict[str, Any]):
|
1308 |
+
"""Load the state produced from `self._get_flat_param_state_to_save()`."""
|
1309 |
+
self._prepare_fsdp_model(fsdp_model)
|
1310 |
+
fsdp_modules = self._fsdp_modules(fsdp_model)
|
1311 |
+
assert len(model_state["modules"]) == len(fsdp_modules)
|
1312 |
+
for (_, fsdp_module), module_data in zip(fsdp_modules, model_state["modules"]):
|
1313 |
+
handles = self._fsdp_handles(fsdp_module)
|
1314 |
+
assert len(handles) == len(module_data["handles"])
|
1315 |
+
for handle, data in zip(handles, module_data["handles"]):
|
1316 |
+
flat_param = handle.flat_param
|
1317 |
+
# Make sure metadata matches.
|
1318 |
+
for key in self._FLAT_PARAM_METADATA_TO_SAVE:
|
1319 |
+
if hasattr(flat_param, key):
|
1320 |
+
assert getattr(flat_param, key) == data[f"flat_param.{key}"]
|
1321 |
+
# Load the flat sharded data.
|
1322 |
+
flat_param.copy_(data["flat_param.data"])
|
1323 |
+
|
1324 |
+
def _save_metadata(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
|
1325 |
+
if get_fs_local_rank() == 0:
|
1326 |
+
log.info("Saving metadata...")
|
1327 |
+
metadata = _LocalShardedCheckpointerMetadata()
|
1328 |
+
metadata.save(metadata_path := Path(dir) / "metadata.yaml")
|
1329 |
+
if upload_to is not None and get_global_rank() == 0:
|
1330 |
+
upload_target = f"{upload_to}/metadata.yaml"
|
1331 |
+
log.info(f"Uploading {metadata_path} to {upload_target}")
|
1332 |
+
upload(metadata_path, upload_target, save_overwrite=self.cfg.save_overwrite)
|
1333 |
+
|
1334 |
+
def _load_metadata(
|
1335 |
+
self, load_path: PathOrStr, *, local_cache: Optional[PathOrStr] = None
|
1336 |
+
) -> _LocalShardedCheckpointerMetadata:
|
1337 |
+
metadata_path = resource_path(load_path, "metadata.yaml", local_cache=local_cache)
|
1338 |
+
return _LocalShardedCheckpointerMetadata.load(metadata_path)
|
1339 |
+
|
1340 |
+
def save_checkpoint(
|
1341 |
+
self,
|
1342 |
+
dir: PathOrStr,
|
1343 |
+
fsdp_model: FSDP,
|
1344 |
+
optim: Optimizer,
|
1345 |
+
trainer_state: Dict[str, Any],
|
1346 |
+
*,
|
1347 |
+
upload_to: Optional[str] = None,
|
1348 |
+
) -> None:
|
1349 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
1350 |
+
# Gather local FSDP flat params data to save.
|
1351 |
+
# We also save some flat param metadata like the corresponding fully qualified names (fqns)
|
1352 |
+
# of each original parameter so we can validate that the sharding is the same when loading
|
1353 |
+
# one of these checkpoints.
|
1354 |
+
log.info("Saving local FSDP flat params data...")
|
1355 |
+
save_state_dict(
|
1356 |
+
checkpoint_dir,
|
1357 |
+
f"model/rank{get_global_rank()}.pt",
|
1358 |
+
self._get_flat_param_state_to_save(fsdp_model),
|
1359 |
+
upload_to=upload_to,
|
1360 |
+
save_overwrite=self.cfg.save_overwrite,
|
1361 |
+
)
|
1362 |
+
|
1363 |
+
# Save optimizer state.
|
1364 |
+
log.info("Saving local optimizer state...")
|
1365 |
+
save_state_dict(
|
1366 |
+
checkpoint_dir,
|
1367 |
+
f"optim/rank{get_global_rank()}.pt",
|
1368 |
+
optim.state_dict(),
|
1369 |
+
upload_to=upload_to,
|
1370 |
+
save_overwrite=self.cfg.save_overwrite,
|
1371 |
+
)
|
1372 |
+
|
1373 |
+
# Save trainer state.
|
1374 |
+
log.info("Saving trainer state...")
|
1375 |
+
save_state_dict(
|
1376 |
+
checkpoint_dir,
|
1377 |
+
f"train/rank{get_global_rank()}.pt",
|
1378 |
+
trainer_state,
|
1379 |
+
upload_to=upload_to,
|
1380 |
+
save_overwrite=self.cfg.save_overwrite,
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
# Save metadata.
|
1384 |
+
self._save_metadata(checkpoint_dir, upload_to=upload_to)
|
1385 |
+
|
1386 |
+
# Save config. We do this last b/c the presence of a config in a remote checkpoint
|
1387 |
+
# "directory" indicates that the folder is valid, as a opposed to a partially
|
1388 |
+
# uploaded checkpoint directory that failed before completing.
|
1389 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
1390 |
+
|
1391 |
+
def restore_checkpoint(
|
1392 |
+
self,
|
1393 |
+
load_path: PathOrStr,
|
1394 |
+
fsdp_model: FSDP,
|
1395 |
+
optim: Optimizer,
|
1396 |
+
*,
|
1397 |
+
local_cache: Optional[PathOrStr] = None,
|
1398 |
+
load_optimizer_state: bool = True,
|
1399 |
+
) -> Dict[str, Any]:
|
1400 |
+
# Load metadata and make sure checkpoint is compatible.
|
1401 |
+
metadata = self._load_metadata(load_path, local_cache=local_cache)
|
1402 |
+
assert metadata.world_size == get_world_size()
|
1403 |
+
|
1404 |
+
# Load local FSDP flat param data.
|
1405 |
+
log.info("Loading local FSDP flat params data...")
|
1406 |
+
model_state = load_state_dict(
|
1407 |
+
load_path, f"model/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
1408 |
+
)
|
1409 |
+
self._load_flat_param_state(fsdp_model, model_state)
|
1410 |
+
del model_state
|
1411 |
+
|
1412 |
+
# Load local optim state.
|
1413 |
+
if load_optimizer_state:
|
1414 |
+
log.info("Loading local optimizer state...")
|
1415 |
+
optim_state = load_state_dict(
|
1416 |
+
load_path, f"optim/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
1417 |
+
)
|
1418 |
+
# HACK/TODO (epwalsh): When we use adaptive clipping we track the 'grad_norm_exp_avg' for every param
|
1419 |
+
# in every rank, and keep this in the optimizer state. But this causes issues when loading the
|
1420 |
+
# state since torch sees the state is non-empty for some params which would normally be empty,
|
1421 |
+
# and then assumes it should have all of the other state tensors for that param, which is doesn't.
|
1422 |
+
# So for now we just remove 'grad_norm_exp_avg' everywhere from the state, which resets that metric.
|
1423 |
+
# Not the end of the world but there's probably a better way around this without resetting
|
1424 |
+
# the metric.
|
1425 |
+
for param_id in list(optim_state["state"].keys()):
|
1426 |
+
state = optim_state["state"][param_id]
|
1427 |
+
if "grad_norm_exp_avg" in state:
|
1428 |
+
del state["grad_norm_exp_avg"]
|
1429 |
+
if len(state) == 0:
|
1430 |
+
del optim_state["state"][param_id]
|
1431 |
+
optim.load_state_dict(optim_state)
|
1432 |
+
del optim_state
|
1433 |
+
|
1434 |
+
# Load local trainer state.
|
1435 |
+
log.info("Loading local trainer state...")
|
1436 |
+
trainer_state = load_state_dict(load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache)
|
1437 |
+
barrier()
|
1438 |
+
return trainer_state
|
1439 |
+
|
1440 |
+
def _iter_flat_param_shards(
|
1441 |
+
self, model_state: Dict[str, Any]
|
1442 |
+
) -> Generator[Tuple[str, _FlatParamShard], None, None]:
|
1443 |
+
for module_data in model_state["modules"]:
|
1444 |
+
module_prefix = module_data["name"].replace("_fsdp_wrapped_module.", "")
|
1445 |
+
for handle in module_data["handles"]:
|
1446 |
+
flat_data = handle["flat_param.data"]
|
1447 |
+
if (num_padding := handle["flat_param._shard_numel_padded"]) > 0:
|
1448 |
+
# If there's padding in the flat param it should be on the right.
|
1449 |
+
assert (flat_data[-num_padding:] == 0).all()
|
1450 |
+
# NOTE: this changes depending on the torch version, but we don't do a version
|
1451 |
+
# check since we might be trying to unshard an old checkpoint that was stored
|
1452 |
+
# with a different torch version than we're currently running with.
|
1453 |
+
if "flat_param._shard_indices" in handle:
|
1454 |
+
# torch <=2.0.1
|
1455 |
+
param_start = handle["flat_param._shard_indices"][0]
|
1456 |
+
current_flat_index = 0
|
1457 |
+
for relative_fqn, full_shape, (offset_start, offset_end) in zip(
|
1458 |
+
handle["flat_param._fqns"][param_start:],
|
1459 |
+
handle["flat_param._shapes"][param_start:],
|
1460 |
+
handle["flat_param._shard_param_offsets"],
|
1461 |
+
):
|
1462 |
+
root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
|
1463 |
+
numel_shard = offset_end - offset_start + 1
|
1464 |
+
flat_param_shard = _FlatParamShard(
|
1465 |
+
full_shape=full_shape,
|
1466 |
+
shard_offsets=(offset_start, offset_end),
|
1467 |
+
shard_data=flat_data[current_flat_index : current_flat_index + numel_shard],
|
1468 |
+
)
|
1469 |
+
current_flat_index += numel_shard
|
1470 |
+
yield root_fqn, flat_param_shard
|
1471 |
+
else:
|
1472 |
+
# torch >=2.1.0
|
1473 |
+
for relative_fqn, full_shape, shard_param_info in zip(
|
1474 |
+
handle["flat_param._fqns"],
|
1475 |
+
handle["flat_param._shapes"],
|
1476 |
+
handle["flat_param._shard_param_infos"],
|
1477 |
+
):
|
1478 |
+
if not shard_param_info.in_shard:
|
1479 |
+
continue
|
1480 |
+
root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
|
1481 |
+
flat_param_shard = _FlatParamShard(
|
1482 |
+
full_shape=full_shape,
|
1483 |
+
shard_offsets=(
|
1484 |
+
shard_param_info.intra_param_start_idx,
|
1485 |
+
shard_param_info.intra_param_end_idx,
|
1486 |
+
),
|
1487 |
+
shard_data=flat_data[
|
1488 |
+
shard_param_info.offset_in_shard : shard_param_info.offset_in_shard
|
1489 |
+
+ shard_param_info.numel_in_shard
|
1490 |
+
],
|
1491 |
+
)
|
1492 |
+
yield root_fqn, flat_param_shard
|
1493 |
+
|
1494 |
+
def unshard_checkpoint(
|
1495 |
+
self,
|
1496 |
+
load_path: PathOrStr,
|
1497 |
+
*,
|
1498 |
+
local_cache: Optional[PathOrStr] = None,
|
1499 |
+
load_optimizer_state: bool = True,
|
1500 |
+
load_trainer_state: bool = True,
|
1501 |
+
device: Optional[torch.device] = None,
|
1502 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
1503 |
+
device = device or torch.device("cpu")
|
1504 |
+
metadata = self._load_metadata(load_path, local_cache=local_cache)
|
1505 |
+
|
1506 |
+
# Gather paths model state, potentially downloading them.
|
1507 |
+
log.info("Gathering model state dicts...")
|
1508 |
+
model_state_paths = self._gather_state_dict_paths(
|
1509 |
+
load_path, "model", metadata.world_size, local_cache=local_cache
|
1510 |
+
)
|
1511 |
+
|
1512 |
+
# Load model state dicts one-by-one, materializing and populating the full parameters as we go.
|
1513 |
+
log.info("Materializing full parameters...")
|
1514 |
+
full_model_state: Dict[str, torch.Tensor] = {}
|
1515 |
+
# We keep a copy of the flat param metadata minus the actual tensors so we can reconstruct
|
1516 |
+
# the full optimizer state below without having to reload the model state dicts.
|
1517 |
+
flat_params_data: Dict[int, Dict[str, _FlatParamShard]] = defaultdict(dict)
|
1518 |
+
for rank, path in enumerate(model_state_paths):
|
1519 |
+
log.info(f"Loading shards from rank {rank}...")
|
1520 |
+
model_state = torch.load(path, map_location="cpu")
|
1521 |
+
for root_fqn, flat_param_shard in self._iter_flat_param_shards(model_state):
|
1522 |
+
if root_fqn not in full_model_state:
|
1523 |
+
log.info(
|
1524 |
+
f"Materializing full parameter '{root_fqn}' with shape {flat_param_shard.full_shape}..."
|
1525 |
+
)
|
1526 |
+
assert flat_param_shard.shard_data is not None
|
1527 |
+
full_model_state[root_fqn] = torch.empty(
|
1528 |
+
flat_param_shard.full_shape, dtype=flat_param_shard.shard_data.dtype, device=device
|
1529 |
+
)
|
1530 |
+
# Fill with NaNs so we can validate that the whole parameter has been populated
|
1531 |
+
# afterwards.
|
1532 |
+
full_model_state[root_fqn].fill_(torch.nan)
|
1533 |
+
# Copy over the local shard to the relevant part of the full parameter.
|
1534 |
+
full_param = full_model_state[root_fqn]
|
1535 |
+
log.info(f"Loading rank {rank} shard for '{root_fqn}'...")
|
1536 |
+
flat_param_shard.copy_into(full_param)
|
1537 |
+
flat_params_data[rank][root_fqn] = replace(flat_param_shard, shard_data=None)
|
1538 |
+
|
1539 |
+
log.info("Validating full parameters...")
|
1540 |
+
for key, tensor in full_model_state.items():
|
1541 |
+
if torch.isnan(tensor).any():
|
1542 |
+
raise ValueError(f"Parameter '{key}' contains NaNs, this is likely a bug with the unsharder")
|
1543 |
+
|
1544 |
+
trainer_state: Optional[Dict[str, Any]] = None
|
1545 |
+
if load_trainer_state:
|
1546 |
+
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
|
1547 |
+
|
1548 |
+
if not load_optimizer_state:
|
1549 |
+
return full_model_state, None, trainer_state
|
1550 |
+
|
1551 |
+
log.info("Gathering optim state dicts...")
|
1552 |
+
optim_state_paths = self._gather_state_dict_paths(
|
1553 |
+
load_path, "optim", metadata.world_size, local_cache=local_cache
|
1554 |
+
)
|
1555 |
+
|
1556 |
+
log.info("Materializing full optim state...")
|
1557 |
+
full_optim_state: Dict[str, Any] = {"state": defaultdict(dict)}
|
1558 |
+
fqn_to_id: Dict[str, int] = {}
|
1559 |
+
id_to_fqn: Dict[int, str] = {}
|
1560 |
+
for rank, path in enumerate(optim_state_paths):
|
1561 |
+
log.info(f"Loading sharded optim state from rank {rank}...")
|
1562 |
+
optim_state = torch.load(path, map_location="cpu")
|
1563 |
+
|
1564 |
+
# Initialize param groups.
|
1565 |
+
# We assume parameter groups are the same across all ranks.
|
1566 |
+
# The only thing that differs across ranks is the state for each local sharded param.
|
1567 |
+
if "param_groups" not in full_optim_state:
|
1568 |
+
full_optim_state["param_groups"] = optim_state["param_groups"]
|
1569 |
+
else:
|
1570 |
+
assert full_optim_state["param_groups"] == optim_state["param_groups"]
|
1571 |
+
|
1572 |
+
# Generate mapping of parameter FQNs to optimizer param IDs and vice-versa.
|
1573 |
+
if not fqn_to_id or not id_to_fqn:
|
1574 |
+
for group in full_optim_state["param_groups"]:
|
1575 |
+
for fqn, id in zip(group["param_names"], group["params"]):
|
1576 |
+
fqn = fqn.replace("_fsdp_wrapped_module.", "")
|
1577 |
+
fqn_to_id[fqn] = id
|
1578 |
+
id_to_fqn[id] = fqn
|
1579 |
+
|
1580 |
+
# Iterate over local shard state and copy into the full state.
|
1581 |
+
for id, shard_state in optim_state["state"].items():
|
1582 |
+
fqn = id_to_fqn[id]
|
1583 |
+
flat_param_shard = flat_params_data[rank].get(fqn) # type: ignore[assignment]
|
1584 |
+
full_state = full_optim_state["state"][id]
|
1585 |
+
for key, shard_value in shard_state.items():
|
1586 |
+
assert isinstance(shard_value, torch.Tensor)
|
1587 |
+
if shard_value.shape == torch.Size([]):
|
1588 |
+
# Add singleton tensors directly to full state. These should be the same across
|
1589 |
+
# all ranks.
|
1590 |
+
assert key in ("step", "grad_norm_exp_avg") # sanity check
|
1591 |
+
if key not in full_state:
|
1592 |
+
full_state[key] = shard_value.to(device)
|
1593 |
+
else:
|
1594 |
+
assert full_state[key] == shard_value
|
1595 |
+
else:
|
1596 |
+
# Otherwise we have a sharded param state.
|
1597 |
+
# If the corresponding full param state hasn't been materialized yet, do so now.
|
1598 |
+
assert flat_param_shard is not None, f"missing flat_params_data for {fqn} from rank {rank}"
|
1599 |
+
if key not in full_state:
|
1600 |
+
log.info(
|
1601 |
+
f"Materializing full state '{key}' for '{fqn}' with shape {flat_param_shard.full_shape}..."
|
1602 |
+
)
|
1603 |
+
full_state[key] = torch.empty(
|
1604 |
+
flat_param_shard.full_shape, dtype=shard_value.dtype, device=device
|
1605 |
+
)
|
1606 |
+
full_state_value = full_state[key]
|
1607 |
+
|
1608 |
+
# Copy over the local shard state to the relevant part of the full parameter state.
|
1609 |
+
log.info(f"Loading rank {rank} shard state of '{key}' for '{fqn}'...")
|
1610 |
+
replace(flat_param_shard, shard_data=shard_value).copy_into(full_state_value)
|
1611 |
+
|
1612 |
+
# Lastly, clean up the parameter names in param groups.
|
1613 |
+
for group in full_optim_state["param_groups"]:
|
1614 |
+
group["param_names"] = [n.replace("_fsdp_wrapped_module.", "") for n in group["param_names"]]
|
1615 |
+
|
1616 |
+
return full_model_state, full_optim_state, trainer_state
|
1617 |
+
|
1618 |
+
def _get_state_dict_path(
|
1619 |
+
self,
|
1620 |
+
load_path: PathOrStr,
|
1621 |
+
state_dict_type: str,
|
1622 |
+
rank: int,
|
1623 |
+
*,
|
1624 |
+
local_cache: Optional[PathOrStr] = None,
|
1625 |
+
progress=None,
|
1626 |
+
) -> Tuple[int, Path]:
|
1627 |
+
fname = f"{state_dict_type}/rank{rank}.pt"
|
1628 |
+
return rank, resource_path(str(load_path).rstrip("/"), fname, local_cache=local_cache, progress=progress)
|
1629 |
+
|
1630 |
+
def _gather_state_dict_paths(
|
1631 |
+
self,
|
1632 |
+
load_path: PathOrStr,
|
1633 |
+
state_dict_type: str,
|
1634 |
+
world_size: int,
|
1635 |
+
*,
|
1636 |
+
local_cache: Optional[PathOrStr] = None,
|
1637 |
+
) -> List[Path]:
|
1638 |
+
progress = get_progress_bar()
|
1639 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
1640 |
+
futures = []
|
1641 |
+
for rank in range(world_size):
|
1642 |
+
future = executor.submit(
|
1643 |
+
self._get_state_dict_path,
|
1644 |
+
load_path,
|
1645 |
+
state_dict_type,
|
1646 |
+
rank,
|
1647 |
+
local_cache=local_cache,
|
1648 |
+
progress=progress,
|
1649 |
+
)
|
1650 |
+
futures.append(future)
|
1651 |
+
|
1652 |
+
results: Dict[int, Path] = {}
|
1653 |
+
for future in as_completed(futures):
|
1654 |
+
rank, path = future.result()
|
1655 |
+
results[rank] = path
|
1656 |
+
|
1657 |
+
return [results[rank] for rank in range(world_size)]
|
1658 |
+
|
1659 |
+
|
1660 |
+
def build_sharded_checkpointer(
|
1661 |
+
cfg: TrainConfig, *, name: Optional[ShardedCheckpointerType] = None
|
1662 |
+
) -> Checkpointer:
|
1663 |
+
name = name or cfg.sharded_checkpointer
|
1664 |
+
if name == ShardedCheckpointerType.torch_new:
|
1665 |
+
return TorchNewStyleShardedCheckpointer(cfg)
|
1666 |
+
elif name == ShardedCheckpointerType.torch_legacy:
|
1667 |
+
return TorchLegacyShardedCheckpointer(cfg)
|
1668 |
+
elif name == ShardedCheckpointerType.local:
|
1669 |
+
return LocalShardedCheckpointer(cfg)
|
1670 |
+
else:
|
1671 |
+
raise NotImplementedError(name)
|
OLMo_Bitnet_1B/config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_type": "swiglu",
|
3 |
+
"alibi": false,
|
4 |
+
"alibi_bias_max": 8.0,
|
5 |
+
"architectures": [
|
6 |
+
"OLMoModelForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"attention_layer_norm": false,
|
10 |
+
"attention_layer_norm_with_affine": false,
|
11 |
+
"bias_for_layer_norm": false,
|
12 |
+
"block_group_size": 1,
|
13 |
+
"block_type": "sequential",
|
14 |
+
"clip_qkv": null,
|
15 |
+
"d_model": 2048,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"embedding_size": 50304,
|
18 |
+
"eos_token_id": 50279,
|
19 |
+
"flash_attention": true,
|
20 |
+
"include_bias": false,
|
21 |
+
"init_cutoff_factor": null,
|
22 |
+
"init_device": "cpu",
|
23 |
+
"init_fn": "mitchell",
|
24 |
+
"init_std": 0.02,
|
25 |
+
"layer_norm_type": "rms",
|
26 |
+
"layer_norm_with_affine": true,
|
27 |
+
"max_sequence_length": 2048,
|
28 |
+
"mlp_hidden_size": null,
|
29 |
+
"mlp_ratio": 8,
|
30 |
+
"model_type": "olmo",
|
31 |
+
"multi_query_attention": false,
|
32 |
+
"n_heads": 16,
|
33 |
+
"n_layers": 16,
|
34 |
+
"pad_token_id": 1,
|
35 |
+
"precision": "amp_bf16",
|
36 |
+
"residual_dropout": 0.0,
|
37 |
+
"rope": true,
|
38 |
+
"rope_full_precision": true,
|
39 |
+
"scale_logits": false,
|
40 |
+
"ternary": true,
|
41 |
+
"transformers_version": "4.38.2",
|
42 |
+
"use_cache": true,
|
43 |
+
"vocab_size": 50280,
|
44 |
+
"inference_mode":false,
|
45 |
+
"weight_tying": true,
|
46 |
+
"auto_map": {
|
47 |
+
"AutoConfig": "configuration_olmo.OLMoConfig",
|
48 |
+
"AutoModelForCausalLM": "modeling_olmo.OLMoForCausalLM"
|
49 |
+
}
|
50 |
+
}
|
OLMo_Bitnet_1B/config.py
ADDED
@@ -0,0 +1,1106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from dataclasses import asdict, dataclass, field
|
4 |
+
from glob import glob
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Dict,
|
9 |
+
Iterable,
|
10 |
+
List,
|
11 |
+
Optional,
|
12 |
+
Tuple,
|
13 |
+
Type,
|
14 |
+
TypeVar,
|
15 |
+
Union,
|
16 |
+
cast,
|
17 |
+
)
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from omegaconf import DictConfig, ListConfig
|
21 |
+
from omegaconf import OmegaConf as om
|
22 |
+
from omegaconf.errors import OmegaConfBaseException
|
23 |
+
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
24 |
+
|
25 |
+
from .aliases import PathOrStr
|
26 |
+
from .beam_search import Sampler
|
27 |
+
from .exceptions import OLMoConfigurationError
|
28 |
+
from .util import StrEnum
|
29 |
+
|
30 |
+
__all__ = [
|
31 |
+
"ActivationType",
|
32 |
+
"ActivationCheckpointingStrategy",
|
33 |
+
"BlockType",
|
34 |
+
"LayerNormType",
|
35 |
+
"InitFnType",
|
36 |
+
"ModelConfig",
|
37 |
+
"OptimizerType",
|
38 |
+
"OptimizerConfig",
|
39 |
+
"SchedulerType",
|
40 |
+
"SchedulerConfig",
|
41 |
+
"DataConfig",
|
42 |
+
"EvaluatorConfig",
|
43 |
+
"TokenizerConfig",
|
44 |
+
"TrainConfig",
|
45 |
+
"PaddingDirection",
|
46 |
+
"TruncationDirection",
|
47 |
+
"SpeedMonitorConfig",
|
48 |
+
"WandbConfig",
|
49 |
+
"CompilerConfig",
|
50 |
+
"WandbConfig",
|
51 |
+
"FSDPPrecision",
|
52 |
+
"FSDPWrapStrategy",
|
53 |
+
"FSDPConfig",
|
54 |
+
"CheckpointType",
|
55 |
+
]
|
56 |
+
|
57 |
+
C = TypeVar("C", bound="BaseConfig")
|
58 |
+
D = TypeVar("D", bound="DictConfig|ListConfig")
|
59 |
+
|
60 |
+
|
61 |
+
class BaseConfig:
|
62 |
+
@classmethod
|
63 |
+
def _register_resolvers(cls, validate_paths: bool = True):
|
64 |
+
# Expands path globs into a list.
|
65 |
+
def path_glob(*paths) -> List[str]:
|
66 |
+
out = []
|
67 |
+
for path in paths:
|
68 |
+
matches = sorted(glob(path))
|
69 |
+
if not matches and validate_paths:
|
70 |
+
raise FileNotFoundError(f"{path} does not match any files or dirs")
|
71 |
+
out.extend(matches)
|
72 |
+
return out
|
73 |
+
|
74 |
+
# Chooses the first path in the arguments that exists.
|
75 |
+
def path_choose(*paths) -> str:
|
76 |
+
from .util import is_url
|
77 |
+
|
78 |
+
for path in paths:
|
79 |
+
if is_url(path) or Path(path).exists():
|
80 |
+
return path
|
81 |
+
if validate_paths:
|
82 |
+
raise FileNotFoundError(", ".join(paths))
|
83 |
+
else:
|
84 |
+
return ""
|
85 |
+
|
86 |
+
# Finds the latest checkpoint in a folder.
|
87 |
+
def path_last_checkpoint(path) -> str:
|
88 |
+
from .util import find_latest_checkpoint
|
89 |
+
|
90 |
+
latest_checkpoint = find_latest_checkpoint(path)
|
91 |
+
if latest_checkpoint is None:
|
92 |
+
if validate_paths:
|
93 |
+
raise FileNotFoundError(f"Could not find a latest checkpoint at {path}")
|
94 |
+
else:
|
95 |
+
return ""
|
96 |
+
else:
|
97 |
+
return str(latest_checkpoint)
|
98 |
+
|
99 |
+
om.register_new_resolver("path.glob", path_glob, replace=True)
|
100 |
+
om.register_new_resolver("path.choose", path_choose, replace=True)
|
101 |
+
om.register_new_resolver("path.last_checkpoint", path_last_checkpoint, replace=True)
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def update_legacy_settings(cls, config: D) -> D:
|
105 |
+
"""
|
106 |
+
Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
|
107 |
+
"""
|
108 |
+
return config
|
109 |
+
|
110 |
+
@classmethod
|
111 |
+
def new(cls: Type[C], **kwargs) -> C:
|
112 |
+
cls._register_resolvers()
|
113 |
+
conf = om.structured(cls)
|
114 |
+
try:
|
115 |
+
if kwargs:
|
116 |
+
conf = om.merge(conf, kwargs)
|
117 |
+
return cast(C, om.to_object(conf))
|
118 |
+
except OmegaConfBaseException as e:
|
119 |
+
raise OLMoConfigurationError(str(e))
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def load(
|
123 |
+
cls: Type[C],
|
124 |
+
path: PathOrStr,
|
125 |
+
overrides: Optional[List[str]] = None,
|
126 |
+
key: Optional[str] = None,
|
127 |
+
validate_paths: bool = True,
|
128 |
+
) -> C:
|
129 |
+
"""Load from a YAML file."""
|
130 |
+
cls._register_resolvers(validate_paths=validate_paths)
|
131 |
+
schema = om.structured(cls)
|
132 |
+
try:
|
133 |
+
raw = om.load(str(path))
|
134 |
+
if key is not None:
|
135 |
+
raw = raw[key] # type: ignore
|
136 |
+
raw = cls.update_legacy_settings(raw)
|
137 |
+
conf = om.merge(schema, raw)
|
138 |
+
if overrides:
|
139 |
+
conf = om.merge(conf, om.from_dotlist(overrides))
|
140 |
+
return cast(C, om.to_object(conf))
|
141 |
+
except OmegaConfBaseException as e:
|
142 |
+
raise OLMoConfigurationError(str(e))
|
143 |
+
|
144 |
+
def save(self, path: PathOrStr) -> None:
|
145 |
+
"""Save to a YAML file."""
|
146 |
+
om.save(config=self, f=str(path))
|
147 |
+
|
148 |
+
def asdict(self, exclude: Optional[Iterable[str]] = None) -> Dict[str, Any]:
|
149 |
+
out = asdict(self) # type: ignore
|
150 |
+
if exclude is not None:
|
151 |
+
for name in exclude:
|
152 |
+
if name in out:
|
153 |
+
del out[name]
|
154 |
+
return out
|
155 |
+
|
156 |
+
|
157 |
+
class LayerNormType(StrEnum):
|
158 |
+
default = "default"
|
159 |
+
"""
|
160 |
+
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
|
161 |
+
"""
|
162 |
+
|
163 |
+
low_precision = "low_precision"
|
164 |
+
"""
|
165 |
+
A low-precision version of the default LayerNorm.
|
166 |
+
"""
|
167 |
+
|
168 |
+
rms = "rms"
|
169 |
+
"""
|
170 |
+
An RMSNorm implementation. When using ``torch.compile`` this is
|
171 |
+
probably the fastest implementation.
|
172 |
+
"""
|
173 |
+
|
174 |
+
|
175 |
+
class ActivationType(StrEnum):
|
176 |
+
gelu = "gelu"
|
177 |
+
relu = "relu"
|
178 |
+
swiglu = "swiglu"
|
179 |
+
|
180 |
+
|
181 |
+
class BlockType(StrEnum):
|
182 |
+
sequential = "sequential"
|
183 |
+
|
184 |
+
llama = "llama"
|
185 |
+
"""
|
186 |
+
A block similar to the sequential block with slightly different
|
187 |
+
implementations of operations like attention to imitate the behavior of Llama.
|
188 |
+
"""
|
189 |
+
|
190 |
+
|
191 |
+
class InitFnType(StrEnum):
|
192 |
+
mitchell = "mitchell"
|
193 |
+
"""
|
194 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
195 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
196 |
+
on the size of the weights as well as the depth of the layer.
|
197 |
+
"""
|
198 |
+
|
199 |
+
normal = "normal"
|
200 |
+
"""
|
201 |
+
All weights are initialized from the same normal distribution.
|
202 |
+
"""
|
203 |
+
|
204 |
+
kaiming_normal = "kaiming_normal"
|
205 |
+
"""
|
206 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
207 |
+
Note this currently won't work with FSDP.
|
208 |
+
"""
|
209 |
+
|
210 |
+
fan_in = "fan_in"
|
211 |
+
"""
|
212 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
213 |
+
is the input dimensionality of the kernel.
|
214 |
+
"""
|
215 |
+
|
216 |
+
full_megatron = "full_megatron"
|
217 |
+
"""
|
218 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
219 |
+
"""
|
220 |
+
|
221 |
+
|
222 |
+
@dataclass
|
223 |
+
class ModelConfig(BaseConfig):
|
224 |
+
"""
|
225 |
+
OLMo (model) configuration.
|
226 |
+
"""
|
227 |
+
|
228 |
+
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
|
229 |
+
|
230 |
+
d_model: int = 768
|
231 |
+
"""
|
232 |
+
The hidden size of the model.
|
233 |
+
"""
|
234 |
+
|
235 |
+
n_heads: int = 12
|
236 |
+
"""
|
237 |
+
The number of self-attention heads.
|
238 |
+
"""
|
239 |
+
|
240 |
+
n_kv_heads: Optional[int] = None
|
241 |
+
"""
|
242 |
+
The number of heads to use for keys and values. Defaults to `n_heads`.
|
243 |
+
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
|
244 |
+
Set this to 1 for multi-query attention.
|
245 |
+
Set it to some in-between value for Llama2-style grouped query attention.
|
246 |
+
"""
|
247 |
+
|
248 |
+
clip_qkv: Optional[float] = None
|
249 |
+
"""
|
250 |
+
Clip QKV to this value when set.
|
251 |
+
"""
|
252 |
+
|
253 |
+
n_layers: int = 12
|
254 |
+
"""
|
255 |
+
The number of layers/blocks.
|
256 |
+
"""
|
257 |
+
|
258 |
+
mlp_ratio: int = 4
|
259 |
+
"""
|
260 |
+
The ratio of the inner MLP dimensionality to ``d_model``.
|
261 |
+
This is only used when ``mlp_hidden_size`` is not set.
|
262 |
+
"""
|
263 |
+
|
264 |
+
mlp_hidden_size: Optional[int] = None
|
265 |
+
"""
|
266 |
+
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
|
267 |
+
"""
|
268 |
+
|
269 |
+
activation_type: ActivationType = ActivationType.swiglu
|
270 |
+
"""
|
271 |
+
The activation function to use within the MLP layers.
|
272 |
+
"""
|
273 |
+
|
274 |
+
block_type: BlockType = BlockType.sequential
|
275 |
+
"""
|
276 |
+
The transformer block implementation.
|
277 |
+
"""
|
278 |
+
|
279 |
+
block_group_size: int = 1
|
280 |
+
"""
|
281 |
+
The number of blocks to group together into a single parent block.
|
282 |
+
This has no affect on the number of parameters in the model and is only used to wrap groups
|
283 |
+
of blocks together with a single FSDP wrapper during training.
|
284 |
+
"""
|
285 |
+
|
286 |
+
alibi: bool = False
|
287 |
+
"""
|
288 |
+
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
|
289 |
+
"""
|
290 |
+
|
291 |
+
alibi_bias_max: float = 8.0
|
292 |
+
"""
|
293 |
+
Maximum absolute value of ALiBi bias.
|
294 |
+
"""
|
295 |
+
|
296 |
+
rope: bool = False
|
297 |
+
"""
|
298 |
+
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
|
299 |
+
"""
|
300 |
+
|
301 |
+
rope_full_precision: bool = True
|
302 |
+
"""
|
303 |
+
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
|
304 |
+
apply RoPE at the precision of the input.
|
305 |
+
"""
|
306 |
+
|
307 |
+
flash_attention: bool = False
|
308 |
+
"""
|
309 |
+
If ``True``, use ``FlashAttention``.
|
310 |
+
"""
|
311 |
+
|
312 |
+
attention_dropout: float = 0.1
|
313 |
+
"""
|
314 |
+
The dropout probability within the attention modules.
|
315 |
+
"""
|
316 |
+
|
317 |
+
multi_query_attention: Optional[bool] = None
|
318 |
+
"""
|
319 |
+
Deprecated. Use n_kv_heads instead.
|
320 |
+
"""
|
321 |
+
|
322 |
+
attention_layer_norm: bool = False
|
323 |
+
"""
|
324 |
+
Apply layer norm to the keys and queries within the attention mechanism.
|
325 |
+
This can help stabilize training.
|
326 |
+
"""
|
327 |
+
|
328 |
+
residual_dropout: float = 0.1
|
329 |
+
"""
|
330 |
+
The dropout probability for the MLP and attention output within each block.
|
331 |
+
"""
|
332 |
+
|
333 |
+
embedding_dropout: float = 0.1
|
334 |
+
"""
|
335 |
+
The dropout probability for embeddings.
|
336 |
+
"""
|
337 |
+
|
338 |
+
layer_norm_type: LayerNormType = LayerNormType.default
|
339 |
+
"""
|
340 |
+
The layernorm implementation to use.
|
341 |
+
"""
|
342 |
+
|
343 |
+
layer_norm_with_affine: bool = True
|
344 |
+
"""
|
345 |
+
Whether to include bias and weight parameters for the layer norms.
|
346 |
+
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
|
347 |
+
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
|
348 |
+
to ``False``.
|
349 |
+
"""
|
350 |
+
|
351 |
+
attention_layer_norm_with_affine: bool = True
|
352 |
+
"""
|
353 |
+
Toggle affine transform for the QK norms.
|
354 |
+
"""
|
355 |
+
|
356 |
+
max_sequence_length: int = 1024
|
357 |
+
"""
|
358 |
+
The maximum input sequence length supported by the model.
|
359 |
+
"""
|
360 |
+
|
361 |
+
include_bias: bool = True
|
362 |
+
"""
|
363 |
+
Whether or not to include bias parameters in linear layers.
|
364 |
+
In PaLM, they got rid of all bias terms because they found that large
|
365 |
+
models tend to have near 0 bias terms anyway.
|
366 |
+
"""
|
367 |
+
|
368 |
+
bias_for_layer_norm: Optional[bool] = None
|
369 |
+
"""
|
370 |
+
Whether or not to include bias parameters in layer norm.
|
371 |
+
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
|
372 |
+
layer norm.
|
373 |
+
When this is None (the default), it inherits the setting from include_bias.
|
374 |
+
"""
|
375 |
+
|
376 |
+
scale_logits: bool = False
|
377 |
+
"""
|
378 |
+
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
|
379 |
+
"""
|
380 |
+
|
381 |
+
vocab_size: int = 50257
|
382 |
+
"""
|
383 |
+
Vocabulary size of the model.
|
384 |
+
"""
|
385 |
+
|
386 |
+
embedding_size: Optional[int] = 50304
|
387 |
+
"""
|
388 |
+
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
|
389 |
+
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
|
390 |
+
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
|
391 |
+
substantially.
|
392 |
+
"""
|
393 |
+
|
394 |
+
weight_tying: bool = True
|
395 |
+
"""
|
396 |
+
Whether to tie output linear weights to the input embedding.
|
397 |
+
"""
|
398 |
+
|
399 |
+
eos_token_id: int = 50256
|
400 |
+
"""
|
401 |
+
The ID of the end-of-sentence special token.
|
402 |
+
"""
|
403 |
+
|
404 |
+
pad_token_id: int = 50256
|
405 |
+
"""
|
406 |
+
The ID of the token to use for padding. Defaults to the ID of the EOS token.
|
407 |
+
"""
|
408 |
+
|
409 |
+
init_device: Optional[str] = None
|
410 |
+
"""
|
411 |
+
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
|
412 |
+
"""
|
413 |
+
|
414 |
+
init_fn: InitFnType = InitFnType.normal
|
415 |
+
"""
|
416 |
+
The weight initialization strategy.
|
417 |
+
"""
|
418 |
+
|
419 |
+
init_std: float = 0.02
|
420 |
+
"""
|
421 |
+
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
|
422 |
+
as "normal".
|
423 |
+
"""
|
424 |
+
|
425 |
+
init_cutoff_factor: Optional[float] = None
|
426 |
+
"""
|
427 |
+
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
|
428 |
+
as "normal". Setting this to None means values are not cutoff.
|
429 |
+
"""
|
430 |
+
|
431 |
+
precision: Optional[str] = None
|
432 |
+
"""
|
433 |
+
Precision used to train/evaluate with. You shouldn't set this directly.
|
434 |
+
See :data:`TrainConfig.precision` instead.
|
435 |
+
"""
|
436 |
+
|
437 |
+
ternary: bool = False
|
438 |
+
"""
|
439 |
+
Use ternary BitLinear layer from "The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits" (https://arxiv.org/pdf/2402.17764.pdf)
|
440 |
+
"""
|
441 |
+
|
442 |
+
@property
|
443 |
+
def effective_n_kv_heads(self) -> int:
|
444 |
+
if self.n_kv_heads is None:
|
445 |
+
if self.multi_query_attention is True:
|
446 |
+
return 1
|
447 |
+
else:
|
448 |
+
return self.n_heads
|
449 |
+
else:
|
450 |
+
if self.multi_query_attention is None:
|
451 |
+
return self.n_kv_heads
|
452 |
+
if self.multi_query_attention:
|
453 |
+
n_kv_heads_should_be = 1
|
454 |
+
else:
|
455 |
+
n_kv_heads_should_be = self.n_heads
|
456 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
457 |
+
return n_kv_heads_should_be
|
458 |
+
else:
|
459 |
+
raise OLMoConfigurationError(
|
460 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
461 |
+
)
|
462 |
+
|
463 |
+
|
464 |
+
class OptimizerType(StrEnum):
|
465 |
+
lionw = "lionw"
|
466 |
+
adamw = "adamw"
|
467 |
+
|
468 |
+
|
469 |
+
@dataclass
|
470 |
+
class OptimizerConfig(BaseConfig):
|
471 |
+
name: OptimizerType = OptimizerType.lionw
|
472 |
+
learning_rate: float = 1.0e-4
|
473 |
+
weight_decay: float = 0.01
|
474 |
+
betas: Tuple[float, float] = (0.9, 0.95)
|
475 |
+
|
476 |
+
no_decay_norm_and_bias: Optional[bool] = None
|
477 |
+
"""
|
478 |
+
Deprecated. Use ``decay_norm_and_bias`` and ``decay_embeddings`` instead.
|
479 |
+
"""
|
480 |
+
|
481 |
+
decay_norm_and_bias: bool = False
|
482 |
+
decay_embeddings: bool = False
|
483 |
+
metrics_log_interval: Optional[int] = None
|
484 |
+
"""
|
485 |
+
The interval with which to collect and log detailed parameter-specific metrics.
|
486 |
+
This only applies when logging to W&B, since these metrics won't be logged to the console.
|
487 |
+
If not set, defaults to the wandb `log_interval`.
|
488 |
+
"""
|
489 |
+
|
490 |
+
def __post_init__(self):
|
491 |
+
self.betas = tuple(self.betas) # type: ignore[assignment]
|
492 |
+
|
493 |
+
@classmethod
|
494 |
+
def update_legacy_settings(cls, config: D) -> D:
|
495 |
+
new_config = config.copy()
|
496 |
+
if om.is_dict(new_config):
|
497 |
+
assert isinstance(new_config, DictConfig)
|
498 |
+
|
499 |
+
if hasattr(new_config, "name") and new_config.name == "decoupled_lionw":
|
500 |
+
new_config.name = "lionw"
|
501 |
+
if hasattr(new_config, "eps"):
|
502 |
+
del new_config.eps
|
503 |
+
|
504 |
+
return new_config
|
505 |
+
|
506 |
+
|
507 |
+
class SchedulerType(StrEnum):
|
508 |
+
cosine_with_warmup = "cosine_with_warmup"
|
509 |
+
linear_with_warmup = "linear_with_warmup"
|
510 |
+
inverse_sqrt_with_warmup = "inverse_sqrt_with_warmup"
|
511 |
+
max_scheduler = "max_scheduler"
|
512 |
+
constant = "constant"
|
513 |
+
|
514 |
+
|
515 |
+
class SchedulerUnits(StrEnum):
|
516 |
+
steps = "steps"
|
517 |
+
tokens = "tokens"
|
518 |
+
|
519 |
+
|
520 |
+
@dataclass
|
521 |
+
class SchedulerConfig(BaseConfig):
|
522 |
+
name: SchedulerType = SchedulerType.cosine_with_warmup
|
523 |
+
units: SchedulerUnits = SchedulerUnits.steps
|
524 |
+
t_warmup: Union[int, float] = 100
|
525 |
+
t_max: Optional[Union[int, float]] = None
|
526 |
+
alpha_f: float = 0.1
|
527 |
+
|
528 |
+
grad_clip_warmup_steps: Optional[Union[int, float]] = None
|
529 |
+
"""
|
530 |
+
The warmup period for which the max grad norm (or norm ratio) will be set to its
|
531 |
+
warmup value of `max_grad_norm * grad_clip_warmup_factor`.
|
532 |
+
"""
|
533 |
+
|
534 |
+
grad_clip_warmup_factor: Optional[float] = None
|
535 |
+
"""
|
536 |
+
The ratio of the max allowed gradient norm (or norm ratio) for clipping during the warmup period
|
537 |
+
vs after the warmup period.
|
538 |
+
"""
|
539 |
+
|
540 |
+
|
541 |
+
class PaddingDirection(StrEnum):
|
542 |
+
right = "right"
|
543 |
+
left = "left"
|
544 |
+
|
545 |
+
|
546 |
+
@dataclass
|
547 |
+
class DataConfig(BaseConfig):
|
548 |
+
paths: Optional[List[str]] = None
|
549 |
+
datasets: Optional[Dict[str, List[str]]] = None
|
550 |
+
label_mask_paths: Optional[List[str]] = None
|
551 |
+
pad_direction: PaddingDirection = PaddingDirection.right
|
552 |
+
generate_attention_mask: bool = False
|
553 |
+
num_workers: int = 0
|
554 |
+
drop_last: bool = False
|
555 |
+
pin_memory: bool = False
|
556 |
+
prefetch_factor: Optional[int] = None
|
557 |
+
persistent_workers: bool = False
|
558 |
+
timeout: int = 0
|
559 |
+
seed: Optional[int] = None
|
560 |
+
|
561 |
+
|
562 |
+
class EvaluatorType(StrEnum):
|
563 |
+
downstream = "downstream"
|
564 |
+
lm = "lm"
|
565 |
+
|
566 |
+
|
567 |
+
@dataclass
|
568 |
+
class EvaluatorConfig(BaseConfig):
|
569 |
+
label: str
|
570 |
+
type: EvaluatorType = EvaluatorType.lm
|
571 |
+
data: DataConfig = field(default_factory=DataConfig)
|
572 |
+
device_eval_batch_size: Optional[int] = None
|
573 |
+
subset_num_batches: Optional[int] = None
|
574 |
+
|
575 |
+
|
576 |
+
class TruncationDirection(StrEnum):
|
577 |
+
right = "right"
|
578 |
+
left = "left"
|
579 |
+
|
580 |
+
|
581 |
+
@dataclass
|
582 |
+
class TokenizerConfig(BaseConfig):
|
583 |
+
identifier: str = "gpt2"
|
584 |
+
truncate_direction: TruncationDirection = TruncationDirection.right
|
585 |
+
|
586 |
+
|
587 |
+
@dataclass
|
588 |
+
class WandbConfig(BaseConfig):
|
589 |
+
project: Optional[str] = None
|
590 |
+
entity: Optional[str] = "ai2-llm"
|
591 |
+
group: Optional[str] = None
|
592 |
+
name: Optional[str] = None
|
593 |
+
tags: Optional[List[str]] = field(default_factory=lambda: ["watching"])
|
594 |
+
log_artifacts: bool = False
|
595 |
+
rank_zero_only: bool = True
|
596 |
+
log_interval: int = 1
|
597 |
+
|
598 |
+
|
599 |
+
@dataclass
|
600 |
+
class SpeedMonitorConfig(BaseConfig):
|
601 |
+
window_size: int = 100
|
602 |
+
gpu_flops_available: Optional[Union[float, int]] = None
|
603 |
+
|
604 |
+
|
605 |
+
@dataclass
|
606 |
+
class CompilerConfig(BaseConfig):
|
607 |
+
mode: Optional[str] = None
|
608 |
+
"""
|
609 |
+
The mode to compile the model in. At the moment this can be "default",
|
610 |
+
"reduce-overhead" (useful for smaller models/batches), or "max-autotune"
|
611 |
+
(the fastest for larger models, but takes a long time to compile).
|
612 |
+
"""
|
613 |
+
|
614 |
+
fullgraph: bool = False
|
615 |
+
"""
|
616 |
+
Whether it is OK to break model into several subgraphs when compiling.
|
617 |
+
Note that this is not compatible with FSDP.
|
618 |
+
"""
|
619 |
+
|
620 |
+
backend: str = "inductor"
|
621 |
+
"""
|
622 |
+
The backend to use.
|
623 |
+
"""
|
624 |
+
|
625 |
+
|
626 |
+
class FSDPWrapStrategy(StrEnum):
|
627 |
+
by_block = "by_block"
|
628 |
+
"""
|
629 |
+
Wrap each OLMo block with its own FSDP instance.
|
630 |
+
"""
|
631 |
+
|
632 |
+
by_block_and_size = "by_block_and_size"
|
633 |
+
"""
|
634 |
+
Like 'by_block' but `wte` and `ff_out` will be wrapped separately as well.
|
635 |
+
"""
|
636 |
+
|
637 |
+
by_block_group = "by_block_group"
|
638 |
+
"""
|
639 |
+
Wrap each block group together into its own FSDP instance.
|
640 |
+
This requires :attr:`~ModelConfig.block_group_size` to be bigger than 1.
|
641 |
+
"""
|
642 |
+
|
643 |
+
by_block_group_and_size = "by_block_group_and_size"
|
644 |
+
"""
|
645 |
+
Like 'by_block_group' but `wte` and `ff_out` will be wrapped separately as well.
|
646 |
+
"""
|
647 |
+
|
648 |
+
size_based = "size_based"
|
649 |
+
"""
|
650 |
+
Used PyTorch's default size-based auto wrap policy.
|
651 |
+
"""
|
652 |
+
|
653 |
+
one_in_two = "one_in_two"
|
654 |
+
one_in_three = "one_in_three"
|
655 |
+
one_in_four = "one_in_four"
|
656 |
+
one_in_five = "one_in_five"
|
657 |
+
|
658 |
+
|
659 |
+
class FSDPPrecision(StrEnum):
|
660 |
+
pure = "pure"
|
661 |
+
"""
|
662 |
+
Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, ``reduce_dtype``,
|
663 |
+
and ``buffer_dtype`` all set to the autocast precision data type.
|
664 |
+
"""
|
665 |
+
|
666 |
+
mixed = "mixed"
|
667 |
+
"""
|
668 |
+
Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, and ``buffer_dtype``
|
669 |
+
set to the autocast precision data type, while ``reduce_dtype`` is set to fp32.
|
670 |
+
"""
|
671 |
+
|
672 |
+
|
673 |
+
@dataclass
|
674 |
+
class FSDPConfig(BaseConfig):
|
675 |
+
use_orig_params: bool = True
|
676 |
+
"""
|
677 |
+
This must be ``True`` if using ``compile`` or you want to track the parameter norm during training.
|
678 |
+
"""
|
679 |
+
|
680 |
+
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD
|
681 |
+
|
682 |
+
wrapping_strategy: Optional[FSDPWrapStrategy] = None
|
683 |
+
"""
|
684 |
+
The wrapping strategy to use. If ``None``, the default, the model is wrapped with a single top-level
|
685 |
+
FSDP instance.
|
686 |
+
"""
|
687 |
+
|
688 |
+
precision: FSDPPrecision = FSDPPrecision.pure
|
689 |
+
|
690 |
+
|
691 |
+
class CheckpointType(StrEnum):
|
692 |
+
sharded = "sharded"
|
693 |
+
unsharded = "unsharded"
|
694 |
+
sharded_ephemeral = "sharded_ephemeral"
|
695 |
+
|
696 |
+
|
697 |
+
class ShardedCheckpointerType(StrEnum):
|
698 |
+
torch_new = "torch_new"
|
699 |
+
torch_legacy = "torch_legacy"
|
700 |
+
local = "local"
|
701 |
+
|
702 |
+
|
703 |
+
class ActivationCheckpointingStrategy(StrEnum):
|
704 |
+
whole_layer = "whole_layer"
|
705 |
+
"""
|
706 |
+
Checkpoint every transformer layer.
|
707 |
+
"""
|
708 |
+
|
709 |
+
one_in_two = "one_in_two"
|
710 |
+
"""
|
711 |
+
Checkpoint one in two transformer layers.
|
712 |
+
"""
|
713 |
+
|
714 |
+
one_in_three = "one_in_three"
|
715 |
+
"""
|
716 |
+
Checkpoint one in three transformer layers.
|
717 |
+
"""
|
718 |
+
|
719 |
+
one_in_four = "one_in_four"
|
720 |
+
"""
|
721 |
+
Checkpoint one in four transformer layers.
|
722 |
+
"""
|
723 |
+
|
724 |
+
two_in_three = "two_in_three"
|
725 |
+
"""
|
726 |
+
Checkpoint two out of every three transformer layers.
|
727 |
+
"""
|
728 |
+
|
729 |
+
three_in_four = "three_in_four"
|
730 |
+
"""
|
731 |
+
Checkpoint three out of four of every transformer layers.
|
732 |
+
"""
|
733 |
+
|
734 |
+
fine_grained = "fine_grained"
|
735 |
+
"""
|
736 |
+
Focus checkpointing on where it is cheap to recompute and saves most memory.
|
737 |
+
"""
|
738 |
+
|
739 |
+
|
740 |
+
@dataclass
|
741 |
+
class TrainConfig(BaseConfig):
|
742 |
+
"""
|
743 |
+
OLMo training configuration.
|
744 |
+
"""
|
745 |
+
|
746 |
+
run_name: Optional[str] = None
|
747 |
+
"""
|
748 |
+
The name of the run.
|
749 |
+
"""
|
750 |
+
|
751 |
+
seed: int = 6198
|
752 |
+
"""
|
753 |
+
Used to seed all initial RNG states.
|
754 |
+
"""
|
755 |
+
|
756 |
+
epoch: Optional[int] = None
|
757 |
+
"""
|
758 |
+
Increment this when starting a new epoch.
|
759 |
+
"""
|
760 |
+
|
761 |
+
dry_run: bool = False
|
762 |
+
"""
|
763 |
+
If ``True``, don't actually train.
|
764 |
+
"""
|
765 |
+
|
766 |
+
model: ModelConfig = field(default_factory=ModelConfig)
|
767 |
+
"""
|
768 |
+
OLMo Model configuration.
|
769 |
+
"""
|
770 |
+
|
771 |
+
optimizer: OptimizerConfig = field(default_factory=OptimizerConfig)
|
772 |
+
"""
|
773 |
+
Optimizer configuration.
|
774 |
+
"""
|
775 |
+
|
776 |
+
scheduler: SchedulerConfig = field(default_factory=SchedulerConfig)
|
777 |
+
"""
|
778 |
+
Learning rate scheduler configuration.
|
779 |
+
"""
|
780 |
+
|
781 |
+
data: DataConfig = field(default_factory=DataConfig)
|
782 |
+
"""
|
783 |
+
Training data configuration.
|
784 |
+
"""
|
785 |
+
|
786 |
+
restore_dataloader: bool = True
|
787 |
+
"""
|
788 |
+
When restarting, restore the data loader to where it left off.
|
789 |
+
If you restarting in order to train on a different dataset, set this to ``False``.
|
790 |
+
"""
|
791 |
+
|
792 |
+
fast_forward_batches: Optional[int] = None
|
793 |
+
"""
|
794 |
+
When restarting, use this to fast-forward the dataloader beyond the last checkpoint.
|
795 |
+
This can be useful when restarting due to a loss spike in order to skip the data that
|
796 |
+
corresponded to the spike.
|
797 |
+
"""
|
798 |
+
|
799 |
+
evaluators: List[EvaluatorConfig] = field(default_factory=list)
|
800 |
+
"""
|
801 |
+
Evaluation configurations.
|
802 |
+
"""
|
803 |
+
|
804 |
+
eval_interval: int = 1000
|
805 |
+
"""
|
806 |
+
How often (in terms of batches) to run evaluations.
|
807 |
+
"""
|
808 |
+
|
809 |
+
tokenizer: TokenizerConfig = field(default_factory=TokenizerConfig)
|
810 |
+
"""
|
811 |
+
Tokenizer configuration.
|
812 |
+
"""
|
813 |
+
|
814 |
+
save_folder: str = "./"
|
815 |
+
"""
|
816 |
+
The directory to save checkpoints to.
|
817 |
+
"""
|
818 |
+
|
819 |
+
remote_save_folder: Optional[str] = None
|
820 |
+
"""
|
821 |
+
A folder in a cloud bucket to upload saved checkpoints to.
|
822 |
+
"""
|
823 |
+
|
824 |
+
canceled_check_interval: int = 50
|
825 |
+
"""
|
826 |
+
How often (in batches) to check if the run has been canceled or reached its time limit.
|
827 |
+
"""
|
828 |
+
|
829 |
+
save_interval: int = 1000
|
830 |
+
"""
|
831 |
+
How often (in terms of steps) to save sharded training state checkpoints.
|
832 |
+
"""
|
833 |
+
|
834 |
+
save_interval_unsharded: Optional[int] = None
|
835 |
+
"""
|
836 |
+
How often (if at all) to save unsharded training state checkpoint.
|
837 |
+
For large models it can be costly to save these, so it usually makes sense to save
|
838 |
+
these less often than regular (sharded) training checkpoints.
|
839 |
+
"""
|
840 |
+
|
841 |
+
save_interval_ephemeral: Optional[int] = None
|
842 |
+
"""
|
843 |
+
How often (if at all) to save ephemeral sharded checkpoints. These checkpoints are the same
|
844 |
+
as those saved every `save_interval` except that at most only the most recent one of these is kept.
|
845 |
+
This is useful when you want to checkpoint often for restarts in case of failures, but don't
|
846 |
+
want to keep the majority of these checkpoints.
|
847 |
+
|
848 |
+
For example, suppose you want to keep your checkpoints at every 1000 steps, but you also want to save
|
849 |
+
a temporary checkpoint every 100 steps in case your job fails. In that case you would
|
850 |
+
set `save_interval=1000` and `save_interval_ephemeral=100`.
|
851 |
+
"""
|
852 |
+
|
853 |
+
save_num_checkpoints_to_keep: int = -1
|
854 |
+
"""
|
855 |
+
How many sharded checkpoints to keep.
|
856 |
+
"""
|
857 |
+
|
858 |
+
save_num_unsharded_checkpoints_to_keep: int = -1
|
859 |
+
"""
|
860 |
+
How many unsharded checkpoints to keep.
|
861 |
+
"""
|
862 |
+
|
863 |
+
save_overwrite: bool = False
|
864 |
+
"""
|
865 |
+
If ``True``, overwrite any conflicting checkpoint files.
|
866 |
+
"""
|
867 |
+
|
868 |
+
force_save_unsharded: bool = False
|
869 |
+
"""
|
870 |
+
Save an unsharded checkpoint before training (even during a dry run).
|
871 |
+
Use this option with `--load-path={PATH}` and `--dry_run` to convert a sharded
|
872 |
+
checkpoint into an unsharded checkpoint.
|
873 |
+
"""
|
874 |
+
|
875 |
+
no_pre_train_checkpoint: bool = False
|
876 |
+
"""
|
877 |
+
Skip saving pre-train checkpoint.
|
878 |
+
"""
|
879 |
+
|
880 |
+
load_path: Optional[str] = None
|
881 |
+
"""
|
882 |
+
The path to a training checkpoint to restore/resume from.
|
883 |
+
|
884 |
+
Note that you can make use of the "path.last_checkpoint" Omegaconfig YAML resolver here, which takes
|
885 |
+
a local or remote directory and resolves to the latest checkpoint (sharded or unsharded) in that directory.
|
886 |
+
For example,
|
887 |
+
|
888 |
+
```bash
|
889 |
+
--load_path='${path.last_checkpoint:s3://ai2-llm/checkpoints/7b/v1_5-mix-run-001}'
|
890 |
+
```
|
891 |
+
"""
|
892 |
+
|
893 |
+
load_path_sharded_checkpointer: Optional[ShardedCheckpointerType] = None
|
894 |
+
"""
|
895 |
+
The sharded checkpointer type to use to load the initial checkpoint from ``load_path``.
|
896 |
+
"""
|
897 |
+
|
898 |
+
reset_optimizer_state: bool = False
|
899 |
+
"""
|
900 |
+
When this is set, we restore the model from a checkpoint (if given), but we leave the optimizer uninitialized.
|
901 |
+
We also set a new learning rate schedule that does a new warmup, such that it intercepts the original learning
|
902 |
+
curve (according to the current learning rate schedule settings), and continues from there.
|
903 |
+
"""
|
904 |
+
|
905 |
+
reset_trainer_state: bool = False
|
906 |
+
"""
|
907 |
+
When this is set we don't restore the trainer state from a checkpoint.
|
908 |
+
"""
|
909 |
+
|
910 |
+
sharded_checkpointer: ShardedCheckpointerType = ShardedCheckpointerType.torch_legacy
|
911 |
+
"""
|
912 |
+
The name of the sharded checkpointer to use to save (sharded) checkpoints throughout training.
|
913 |
+
"""
|
914 |
+
|
915 |
+
new_style_checkpoints: Optional[bool] = None
|
916 |
+
"""
|
917 |
+
Deprecated. Use ``sharded_checkpointer`` instead.
|
918 |
+
"""
|
919 |
+
|
920 |
+
max_duration: Union[int, str] = 10000
|
921 |
+
"""
|
922 |
+
How long to train for.
|
923 |
+
|
924 |
+
If specified without a unit (the default), the units are assumed to be steps.
|
925 |
+
You can also specify this in terms of tokens, for example: `max_duration="2e12T"` means train until
|
926 |
+
2 trillion tokens.
|
927 |
+
"""
|
928 |
+
|
929 |
+
global_train_batch_size: int = 512
|
930 |
+
"""
|
931 |
+
The effective global batch size.
|
932 |
+
"""
|
933 |
+
|
934 |
+
device_train_batch_size: Optional[int] = None # calculated automatically
|
935 |
+
"""
|
936 |
+
Don't set this manually. This will be set to ``global_train_batch_size // world_size``.
|
937 |
+
"""
|
938 |
+
|
939 |
+
device_train_microbatch_size: int = 16
|
940 |
+
"""
|
941 |
+
The number of instances passed to the model in a single forward-backward pass. You should set
|
942 |
+
this as large as you can based on available GPU memory.
|
943 |
+
"""
|
944 |
+
|
945 |
+
device_eval_batch_size: int = 16
|
946 |
+
"""
|
947 |
+
The number of evaluation instances passed to the model in a single forward pass on each device.
|
948 |
+
"""
|
949 |
+
|
950 |
+
eval_subset_num_batches: int = -1
|
951 |
+
"""
|
952 |
+
The number of batches to use for downstream evaluation from each dataset.
|
953 |
+
"""
|
954 |
+
|
955 |
+
eval_on_load: bool = False
|
956 |
+
"""
|
957 |
+
When resuming from a checkpoint, run the evaluation loop right away.
|
958 |
+
"""
|
959 |
+
|
960 |
+
device_train_grad_accum: Optional[int] = None # calculated automatically
|
961 |
+
"""
|
962 |
+
Don't set this manually. This will be set to ``device_train_batch_size // device_train_microbatch_size``.
|
963 |
+
"""
|
964 |
+
|
965 |
+
max_grad_norm: Optional[float] = None
|
966 |
+
"""
|
967 |
+
Clip gradient norms to this value if set.
|
968 |
+
"""
|
969 |
+
|
970 |
+
max_grad_norm_ratio: Optional[float] = None
|
971 |
+
"""
|
972 |
+
If set, gradient norms will be clipped to `max_grad_norm_ratio * exp_avg(norm(grad))`.
|
973 |
+
This takes priority over `max_grad_norm` when set.
|
974 |
+
"""
|
975 |
+
|
976 |
+
precision: Optional[str] = None
|
977 |
+
"""
|
978 |
+
Precision to train with (e.g. "amp_bf16", "amp_fp16", or "fp32").
|
979 |
+
"""
|
980 |
+
|
981 |
+
wandb: Optional[WandbConfig] = None
|
982 |
+
"""
|
983 |
+
Weights & Biases configuration.
|
984 |
+
"""
|
985 |
+
|
986 |
+
speed_monitor: SpeedMonitorConfig = field(default_factory=SpeedMonitorConfig)
|
987 |
+
"""
|
988 |
+
Speed monitor configuration.
|
989 |
+
"""
|
990 |
+
|
991 |
+
console_log_interval: int = 1
|
992 |
+
"""
|
993 |
+
How often to log to the console.
|
994 |
+
"""
|
995 |
+
|
996 |
+
compile: Optional[CompilerConfig] = None
|
997 |
+
"""
|
998 |
+
Settings for compiling the model with ``torch.compile()``.
|
999 |
+
"""
|
1000 |
+
|
1001 |
+
fsdp: FSDPConfig = field(default_factory=FSDPConfig)
|
1002 |
+
"""
|
1003 |
+
Fully sharded data parallel settings.
|
1004 |
+
"""
|
1005 |
+
|
1006 |
+
softmax_auxiliary_loss: bool = False
|
1007 |
+
"""
|
1008 |
+
If ``True``, we add the auxiliary loss function from PaLM that encourages the softmax
|
1009 |
+
normalizing term to be close to 0.
|
1010 |
+
"""
|
1011 |
+
|
1012 |
+
time_limit: Optional[float] = 60 * 60 * 47.5
|
1013 |
+
"""
|
1014 |
+
The maximum amount of time to train for before saving a checkpoint and ending early.
|
1015 |
+
On LUMI we have 48 hours max per job, so we default to just under 48 hours to give us time
|
1016 |
+
to write out a final checkpoint.
|
1017 |
+
"""
|
1018 |
+
|
1019 |
+
extra_steps_after_cancel: int = 10
|
1020 |
+
"""
|
1021 |
+
Under certain conditions when a run is canceled we train for a few extra steps after saving
|
1022 |
+
the final checkpoint so that when the run is restarted from the latest checkpoint we have some
|
1023 |
+
overlap in metrics.
|
1024 |
+
"""
|
1025 |
+
|
1026 |
+
early_stopping_factor: Optional[float] = None
|
1027 |
+
|
1028 |
+
save_data_indices: bool = True
|
1029 |
+
"""
|
1030 |
+
Save training data indices from each batch for each worker.
|
1031 |
+
"""
|
1032 |
+
|
1033 |
+
python_profiling: bool = False
|
1034 |
+
"""
|
1035 |
+
Whether to run the Python profiler on batches 6, 7, and 8.
|
1036 |
+
"""
|
1037 |
+
|
1038 |
+
torch_profiling: bool = False
|
1039 |
+
"""
|
1040 |
+
Whether to run the PyTorch profiler on batches 6, 7, and 8.
|
1041 |
+
"""
|
1042 |
+
|
1043 |
+
stop_at: Optional[int] = None
|
1044 |
+
"""
|
1045 |
+
Stop at a specific step.
|
1046 |
+
"""
|
1047 |
+
|
1048 |
+
stop_after: Optional[int] = None
|
1049 |
+
"""
|
1050 |
+
Stop after a specific number of steps.
|
1051 |
+
"""
|
1052 |
+
|
1053 |
+
activation_checkpointing: Optional[ActivationCheckpointingStrategy] = None
|
1054 |
+
"""
|
1055 |
+
The activation checkpointing strategy to use.
|
1056 |
+
"""
|
1057 |
+
|
1058 |
+
fused_loss: Optional[bool] = None
|
1059 |
+
"""
|
1060 |
+
Whether to use the fused CE loss function from `flash-attn`.
|
1061 |
+
"""
|
1062 |
+
|
1063 |
+
@property
|
1064 |
+
def autocast_precision(self) -> torch.dtype:
|
1065 |
+
if self.precision == "amp_bf16":
|
1066 |
+
return torch.bfloat16
|
1067 |
+
elif self.precision == "amp_fp16":
|
1068 |
+
return torch.float16
|
1069 |
+
elif self.precision == "fp32":
|
1070 |
+
return torch.float32
|
1071 |
+
else:
|
1072 |
+
raise ValueError(f"Unexpected precision type '{self.precision}'")
|
1073 |
+
|
1074 |
+
@property
|
1075 |
+
def fsdp_precision(self) -> MixedPrecision:
|
1076 |
+
if self.fsdp.precision == FSDPPrecision.pure:
|
1077 |
+
return MixedPrecision(
|
1078 |
+
param_dtype=self.autocast_precision,
|
1079 |
+
reduce_dtype=self.autocast_precision,
|
1080 |
+
buffer_dtype=self.autocast_precision,
|
1081 |
+
)
|
1082 |
+
elif self.fsdp.precision == FSDPPrecision.mixed:
|
1083 |
+
return MixedPrecision(
|
1084 |
+
param_dtype=self.autocast_precision,
|
1085 |
+
reduce_dtype=torch.float32,
|
1086 |
+
buffer_dtype=self.autocast_precision,
|
1087 |
+
)
|
1088 |
+
else:
|
1089 |
+
raise NotImplementedError(f"{self.fsdp.precision}")
|
1090 |
+
|
1091 |
+
@classmethod
|
1092 |
+
def update_legacy_settings(cls, config: D) -> D:
|
1093 |
+
new_config = config.copy()
|
1094 |
+
if om.is_dict(new_config):
|
1095 |
+
assert isinstance(new_config, DictConfig)
|
1096 |
+
|
1097 |
+
if hasattr(new_config, "activation_checkpointing"):
|
1098 |
+
if new_config.activation_checkpointing is False:
|
1099 |
+
new_config.activation_checkpointing = None
|
1100 |
+
if new_config.activation_checkpointing is True:
|
1101 |
+
new_config.activation_checkpointing = ActivationCheckpointingStrategy.whole_layer
|
1102 |
+
|
1103 |
+
if hasattr(new_config, "optimizer"):
|
1104 |
+
new_config.optimizer = OptimizerConfig.update_legacy_settings(new_config.optimizer)
|
1105 |
+
|
1106 |
+
return new_config
|
OLMo_Bitnet_1B/configuration_olmo.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OLMo configuration
|
3 |
+
"""
|
4 |
+
|
5 |
+
from transformers import AutoConfig, PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
from .config import ModelConfig
|
9 |
+
from .aliases import PathOrStr
|
10 |
+
from .beam_search import Sampler
|
11 |
+
from .exceptions import OLMoError
|
12 |
+
from .initialization import ModuleType
|
13 |
+
from .optim import Optimizer
|
14 |
+
from .util import StrEnum
|
15 |
+
from .safetensors_util import STKey
|
16 |
+
from .torch_util import seed_all
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class OLMoConfig(PretrainedConfig):
|
22 |
+
model_type = "olmo"
|
23 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
24 |
+
|
25 |
+
def __init__(self, use_cache: bool = False, **kwargs):
|
26 |
+
model_config = ModelConfig()
|
27 |
+
all_kwargs = model_config.asdict()
|
28 |
+
all_kwargs.update(kwargs)
|
29 |
+
all_kwargs.update({"use_cache": use_cache})
|
30 |
+
all_kwargs.update(
|
31 |
+
{
|
32 |
+
"architectures": all_kwargs.get("architectures", ["OLMoModelForCausalLM"])
|
33 |
+
or ["OLMoModelForCausalLM"]
|
34 |
+
}
|
35 |
+
)
|
36 |
+
super().__init__(**all_kwargs)
|
37 |
+
|
38 |
+
@property
|
39 |
+
def num_attention_heads(self):
|
40 |
+
return self.n_heads
|
41 |
+
|
42 |
+
@property
|
43 |
+
def num_hidden_layers(self):
|
44 |
+
return self.n_layers
|
45 |
+
|
46 |
+
@property
|
47 |
+
def hidden_size(self):
|
48 |
+
return self.d_model
|
49 |
+
|
50 |
+
|
51 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
52 |
+
# AutoConfig.register("olmo", OLMoConfig)
|
OLMo_Bitnet_1B/exceptions.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"OLMoError",
|
3 |
+
"OLMoConfigurationError",
|
4 |
+
"OLMoCliError",
|
5 |
+
"OLMoEnvironmentError",
|
6 |
+
"OLMoNetworkError",
|
7 |
+
"OLMoCheckpointError",
|
8 |
+
]
|
9 |
+
|
10 |
+
|
11 |
+
class OLMoError(Exception):
|
12 |
+
"""
|
13 |
+
Base class for all custom OLMo exceptions.
|
14 |
+
"""
|
15 |
+
|
16 |
+
|
17 |
+
class OLMoConfigurationError(OLMoError):
|
18 |
+
"""
|
19 |
+
An error with a configuration file.
|
20 |
+
"""
|
21 |
+
|
22 |
+
|
23 |
+
class OLMoCliError(OLMoError):
|
24 |
+
"""
|
25 |
+
An error from incorrect CLI usage.
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
class OLMoEnvironmentError(OLMoError):
|
30 |
+
"""
|
31 |
+
An error from incorrect environment variables.
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
class OLMoNetworkError(OLMoError):
|
36 |
+
"""
|
37 |
+
An error with a network request.
|
38 |
+
"""
|
39 |
+
|
40 |
+
|
41 |
+
class OLMoCheckpointError(OLMoError):
|
42 |
+
"""
|
43 |
+
An error occurred reading or writing from a checkpoint.
|
44 |
+
"""
|
45 |
+
|
46 |
+
|
47 |
+
class OLMoThreadError(Exception):
|
48 |
+
"""
|
49 |
+
Raised when a thread fails.
|
50 |
+
"""
|
OLMo_Bitnet_1B/initialization.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from .config import InitFnType, ModelConfig
|
8 |
+
from .util import StrEnum
|
9 |
+
|
10 |
+
__all__ = ["init_weights", "ModuleType"]
|
11 |
+
|
12 |
+
|
13 |
+
class ModuleType(StrEnum):
|
14 |
+
in_module = "in"
|
15 |
+
out_module = "out"
|
16 |
+
emb = "emb"
|
17 |
+
final_out = "final_out"
|
18 |
+
|
19 |
+
|
20 |
+
def init_weights(
|
21 |
+
config: ModelConfig,
|
22 |
+
module: Union[nn.Linear, nn.Embedding],
|
23 |
+
d: Optional[int] = None,
|
24 |
+
layer_id: Optional[int] = None,
|
25 |
+
std_factor: float = 1.0,
|
26 |
+
type_of_module: Optional[ModuleType] = None,
|
27 |
+
) -> None:
|
28 |
+
"""
|
29 |
+
Initialize weights of a linear or embedding module.
|
30 |
+
|
31 |
+
:param config: The model config.
|
32 |
+
:param module: The linear or embedding submodule to initialize.
|
33 |
+
:param d: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
|
34 |
+
for fused layers.
|
35 |
+
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
|
36 |
+
``1 / sqrt(2 * (layer_id + 1))``.
|
37 |
+
"""
|
38 |
+
d = d if d is not None else config.d_model
|
39 |
+
if config.init_fn == InitFnType.normal:
|
40 |
+
std = config.init_std * std_factor
|
41 |
+
if config.init_cutoff_factor is not None:
|
42 |
+
cutoff_value = config.init_cutoff_factor * std
|
43 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
44 |
+
else:
|
45 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
46 |
+
elif config.init_fn == InitFnType.mitchell:
|
47 |
+
std = std_factor / math.sqrt(d)
|
48 |
+
if layer_id is not None:
|
49 |
+
std = std / math.sqrt(2 * (layer_id + 1))
|
50 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
51 |
+
elif config.init_fn == InitFnType.kaiming_normal:
|
52 |
+
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
|
53 |
+
elif config.init_fn == InitFnType.fan_in:
|
54 |
+
std = std_factor / math.sqrt(d)
|
55 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
56 |
+
elif config.init_fn == InitFnType.full_megatron:
|
57 |
+
if type_of_module is None:
|
58 |
+
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
|
59 |
+
|
60 |
+
cutoff_factor = config.init_cutoff_factor
|
61 |
+
if cutoff_factor is None:
|
62 |
+
cutoff_factor = 3
|
63 |
+
|
64 |
+
if type_of_module == ModuleType.in_module:
|
65 |
+
# for att_proj (same as QKV), ff_proj
|
66 |
+
std = config.init_std
|
67 |
+
elif type_of_module == ModuleType.out_module:
|
68 |
+
# for attn_out, ff_out
|
69 |
+
std = config.init_std / math.sqrt(2.0 * config.n_layers)
|
70 |
+
elif type_of_module == ModuleType.emb:
|
71 |
+
# positional embeddings (wpe)
|
72 |
+
# token embeddings (wte)
|
73 |
+
std = config.init_std
|
74 |
+
elif type_of_module == ModuleType.final_out:
|
75 |
+
# final output (ff_out)
|
76 |
+
std = config.d_model**-0.5
|
77 |
+
else:
|
78 |
+
raise RuntimeError(f"Unknown module type '{type_of_module}'")
|
79 |
+
nn.init.trunc_normal_(
|
80 |
+
module.weight,
|
81 |
+
mean=0.0,
|
82 |
+
std=std,
|
83 |
+
a=-cutoff_factor * std,
|
84 |
+
b=cutoff_factor * std,
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
raise NotImplementedError(config.init_fn)
|
88 |
+
|
89 |
+
if isinstance(module, nn.Linear):
|
90 |
+
if module.bias is not None:
|
91 |
+
nn.init.zeros_(module.bias)
|
92 |
+
|
93 |
+
if config.init_fn == InitFnType.normal and getattr(module, "_is_residual", False):
|
94 |
+
with torch.no_grad():
|
95 |
+
module.weight.div_(math.sqrt(2 * config.n_layers))
|