estellea commited on
Commit
2474882
·
1 Parent(s): 49ccca0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -39
README.md CHANGED
@@ -1,43 +1,8 @@
1
- ---
2
- license: openrail++
3
- tags:
4
- - stable-diffusion
5
- inference: false
6
- ---
7
-
8
- # Stable Diffusion x4 upscaler model card
9
- This model card focuses on the model associated with the Stable Diffusion Upscaler, available [here](https://github.com/Stability-AI/stablediffusion).
10
- This model is trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752).
11
- In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml).
12
-
13
- ![Image](https://github.com/Stability-AI/stablediffusion/raw/main/assets/stable-samples/upscaling/merged-dog.png)
14
-
15
- - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `x4-upscaler-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/resolve/main/x4-upscaler-ema.ckpt).
16
- - Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler#examples)
17
-
18
-
19
- ## Model Details
20
- - **Developed by:** Robin Rombach, Patrick Esser
21
- - **Model type:** Diffusion-based text-to-image generation model
22
- - **Language(s):** English
23
- - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
24
- - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)).
25
- - **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/).
26
- - **Cite as:**
27
-
28
- @InProceedings{Rombach_2022_CVPR,
29
- author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
30
- title = {High-Resolution Image Synthesis With Latent Diffusion Models},
31
- booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
32
- month = {June},
33
- year = {2022},
34
- pages = {10684-10695}
35
- }
36
 
37
 
38
  ## Examples
39
 
40
- Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 in a simple and efficient manner.
41
 
42
  ```bash
43
  pip install diffusers transformers accelerate scipy safetensors
@@ -47,12 +12,12 @@ pip install diffusers transformers accelerate scipy safetensors
47
  import requests
48
  from PIL import Image
49
  from io import BytesIO
50
- from diffusers import StableDiffusionUpscalePipeline
51
  import torch
52
 
53
  # load model and scheduler
54
- model_id = "stabilityai/stable-diffusion-x4-upscaler"
55
- pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
56
  pipeline = pipeline.to("cuda")
57
 
58
  # let's download an image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
 
3
  ## Examples
4
 
5
+ Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) in a simple and efficient manner.
6
 
7
  ```bash
8
  pip install diffusers transformers accelerate scipy safetensors
 
12
  import requests
13
  from PIL import Image
14
  from io import BytesIO
15
+ from diffusers import StableDiffusionUpscaleLDM3DPipeline
16
  import torch
17
 
18
  # load model and scheduler
19
+ model_id = "Intel/ldm3d-hr"
20
+ pipeline = StableDiffusionUpscaleLDM3DPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
21
  pipeline = pipeline.to("cuda")
22
 
23
  # let's download an image