Update README.md
Browse files
README.md
CHANGED
@@ -44,7 +44,7 @@ The model card has been written in combination by the Hugging Face team and Inte
|
|
44 |
| Version | 1 |
|
45 |
| Type | Computer Vision - Monocular Depth Estimation |
|
46 |
| Paper or Other Resources | [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) and [GitHub Repo](https://github.com/isl-org/DPT) |
|
47 |
-
| License |
|
48 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/dpt-large/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)|
|
49 |
|
50 |
| Intended Use | Description |
|
@@ -53,6 +53,48 @@ The model card has been written in combination by the Hugging Face team and Inte
|
|
53 |
| Primary intended users | Anyone doing monocular depth estimation |
|
54 |
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. |
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
| Factors | Description |
|
57 |
| ----------- | ----------- |
|
58 |
| Groups | Multiple datasets compiled together |
|
@@ -102,45 +144,6 @@ protocol defined in [30]. Relative performance is computed with respect to the o
|
|
102 |
| There are no additional caveats or recommendations for this model. |
|
103 |
|
104 |
|
105 |
-
### How to use
|
106 |
-
|
107 |
-
Here is how to use this model for zero-shot depth estimation on an image:
|
108 |
-
|
109 |
-
```python
|
110 |
-
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
111 |
-
import torch
|
112 |
-
import numpy as np
|
113 |
-
from PIL import Image
|
114 |
-
import requests
|
115 |
-
|
116 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
117 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
118 |
-
|
119 |
-
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
120 |
-
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
121 |
-
|
122 |
-
# prepare image for the model
|
123 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
124 |
-
|
125 |
-
with torch.no_grad():
|
126 |
-
outputs = model(**inputs)
|
127 |
-
predicted_depth = outputs.predicted_depth
|
128 |
-
|
129 |
-
# interpolate to original size
|
130 |
-
prediction = torch.nn.functional.interpolate(
|
131 |
-
predicted_depth.unsqueeze(1),
|
132 |
-
size=image.size[::-1],
|
133 |
-
mode="bicubic",
|
134 |
-
align_corners=False,
|
135 |
-
)
|
136 |
-
|
137 |
-
# visualize the prediction
|
138 |
-
output = prediction.squeeze().cpu().numpy()
|
139 |
-
formatted = (output * 255 / np.max(output)).astype("uint8")
|
140 |
-
depth = Image.fromarray(formatted)
|
141 |
-
```
|
142 |
-
|
143 |
-
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt).
|
144 |
|
145 |
### BibTeX entry and citation info
|
146 |
|
|
|
44 |
| Version | 1 |
|
45 |
| Type | Computer Vision - Monocular Depth Estimation |
|
46 |
| Paper or Other Resources | [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) and [GitHub Repo](https://github.com/isl-org/DPT) |
|
47 |
+
| License | Apache 2.0 |
|
48 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/dpt-large/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)|
|
49 |
|
50 |
| Intended Use | Description |
|
|
|
53 |
| Primary intended users | Anyone doing monocular depth estimation |
|
54 |
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. |
|
55 |
|
56 |
+
|
57 |
+
### How to use
|
58 |
+
|
59 |
+
Here is how to use this model for zero-shot depth estimation on an image:
|
60 |
+
|
61 |
+
```python
|
62 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
63 |
+
import torch
|
64 |
+
import numpy as np
|
65 |
+
from PIL import Image
|
66 |
+
import requests
|
67 |
+
|
68 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
69 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
70 |
+
|
71 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
72 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
73 |
+
|
74 |
+
# prepare image for the model
|
75 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
76 |
+
|
77 |
+
with torch.no_grad():
|
78 |
+
outputs = model(**inputs)
|
79 |
+
predicted_depth = outputs.predicted_depth
|
80 |
+
|
81 |
+
# interpolate to original size
|
82 |
+
prediction = torch.nn.functional.interpolate(
|
83 |
+
predicted_depth.unsqueeze(1),
|
84 |
+
size=image.size[::-1],
|
85 |
+
mode="bicubic",
|
86 |
+
align_corners=False,
|
87 |
+
)
|
88 |
+
|
89 |
+
# visualize the prediction
|
90 |
+
output = prediction.squeeze().cpu().numpy()
|
91 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
92 |
+
depth = Image.fromarray(formatted)
|
93 |
+
```
|
94 |
+
|
95 |
+
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt).
|
96 |
+
|
97 |
+
|
98 |
| Factors | Description |
|
99 |
| ----------- | ----------- |
|
100 |
| Groups | Multiple datasets compiled together |
|
|
|
144 |
| There are no additional caveats or recommendations for this model. |
|
145 |
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
### BibTeX entry and citation info
|
149 |
|