IngeniousArtist
commited on
Commit
•
267947c
1
Parent(s):
838c9be
update model card README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the financial_phrasebank dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -57,43 +57,43 @@ The following hyperparameters were used during training:
|
|
57 |
- eval_batch_size: 64
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
-
- lr_scheduler_type:
|
61 |
- num_epochs: 10
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
|
98 |
|
99 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.7045454545454546
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the financial_phrasebank dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.7474
|
36 |
+
- Accuracy: 0.7045
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
57 |
- eval_batch_size: 64
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: cosine
|
61 |
- num_epochs: 10
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.6755 | 0.33 | 20 | 1.4948 | 0.3709 |
|
68 |
+
| 0.4585 | 0.66 | 40 | 0.9705 | 0.6147 |
|
69 |
+
| 0.4267 | 0.98 | 60 | 1.2383 | 0.6012 |
|
70 |
+
| 0.3298 | 1.31 | 80 | 1.0040 | 0.5764 |
|
71 |
+
| 0.2955 | 1.64 | 100 | 1.4078 | 0.4845 |
|
72 |
+
| 0.2521 | 1.97 | 120 | 1.2183 | 0.5702 |
|
73 |
+
| 0.1614 | 2.3 | 140 | 1.4761 | 0.6570 |
|
74 |
+
| 0.1842 | 2.62 | 160 | 1.8172 | 0.6002 |
|
75 |
+
| 0.2124 | 2.95 | 180 | 0.9596 | 0.7211 |
|
76 |
+
| 0.1016 | 3.28 | 200 | 1.3150 | 0.6952 |
|
77 |
+
| 0.0949 | 3.61 | 220 | 1.5779 | 0.6498 |
|
78 |
+
| 0.102 | 3.93 | 240 | 1.9178 | 0.5775 |
|
79 |
+
| 0.0542 | 4.26 | 260 | 2.0914 | 0.6074 |
|
80 |
+
| 0.059 | 4.59 | 280 | 1.7965 | 0.6560 |
|
81 |
+
| 0.0578 | 4.92 | 300 | 2.0358 | 0.5279 |
|
82 |
+
| 0.0335 | 5.25 | 320 | 1.5614 | 0.6829 |
|
83 |
+
| 0.0414 | 5.57 | 340 | 1.8126 | 0.6405 |
|
84 |
+
| 0.0263 | 5.9 | 360 | 1.4405 | 0.6798 |
|
85 |
+
| 0.0257 | 6.23 | 380 | 1.0230 | 0.7417 |
|
86 |
+
| 0.0123 | 6.56 | 400 | 1.9126 | 0.6818 |
|
87 |
+
| 0.0218 | 6.89 | 420 | 1.8622 | 0.6860 |
|
88 |
+
| 0.0063 | 7.21 | 440 | 2.0173 | 0.6705 |
|
89 |
+
| 0.014 | 7.54 | 460 | 1.9129 | 0.6870 |
|
90 |
+
| 0.0037 | 7.87 | 480 | 1.7622 | 0.7035 |
|
91 |
+
| 0.0155 | 8.2 | 500 | 1.7379 | 0.7004 |
|
92 |
+
| 0.0087 | 8.52 | 520 | 1.7150 | 0.6994 |
|
93 |
+
| 0.0055 | 8.85 | 540 | 1.7286 | 0.7025 |
|
94 |
+
| 0.0051 | 9.18 | 560 | 1.7418 | 0.7014 |
|
95 |
+
| 0.0049 | 9.51 | 580 | 1.7468 | 0.7035 |
|
96 |
+
| 0.0056 | 9.84 | 600 | 1.7474 | 0.7045 |
|
97 |
|
98 |
|
99 |
### Framework versions
|