Megrez-3B-Omni / modeling_megrezo.py
kkwhale7's picture
Update modeling_megrezo.py
de89efa verified
raw
history blame
12.7 kB
# Copyright 2024 Infinigence AI Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains the implementation of the Megrez-Omni model."""
import torch
from transformers import AutoProcessor
from transformers import LlamaForCausalLM
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings
from .audio import AudioEncoder
from .configuration_megrezo import MegrezOConfig
from .modeling_navit_siglip import SiglipVisionTransformer
from .resampler import Resampler
def insert_audio_embeddings(text_embeddings, inserted_embeddings, inserted_bounds):
inserted_bounds = inserted_bounds.long()
for idx in range(len(inserted_embeddings)):
bid = inserted_bounds[idx][0]
start_id = inserted_bounds[idx][1]
end_id = inserted_bounds[idx][2]
embedding = inserted_embeddings[idx]
text_embeddings[bid, start_id + 1 : end_id] = embedding
return text_embeddings
def insert_image_embeddings(text_embeddings, inserted_embeddings, inserted_bounds):
inserted_bounds = inserted_bounds.long()
for idx in range(len(inserted_embeddings)):
bid = inserted_bounds[idx][0]
start_id = inserted_bounds[idx][1]
end_id = inserted_bounds[idx][2]
embedding = inserted_embeddings[idx]
text_embeddings[bid, start_id:end_id] = embedding
return text_embeddings
MegrezO_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MegrezOConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare MegrezO Model outputting raw hidden-states without any specific head on top.",
MegrezO_START_DOCSTRING,
)
class MegrezOPreTrainedModel(PreTrainedModel):
base_model_prefix = "model"
supports_gradient_checkpointing = True
config_class = MegrezOConfig
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
class AudioModel(torch.nn.Module):
def __init__(self, config: MegrezOConfig):
super(AudioModel, self).__init__()
self.config = config
self.audio = AudioEncoder(**config.audio_config.to_dict())
def forward(self, audio_info):
audios = audio_info["input_audios"]
input_audio_lengths = audio_info["input_audio_lengths"]
audio_span_tokens = audio_info["audio_span_tokens"]
audios_features = self.audio.encode(audios, input_audio_lengths, audio_span_tokens)
return audios_features
class VisionModel(torch.nn.Module):
def __init__(self, config: MegrezOConfig):
super(VisionModel, self).__init__()
self.config = config
self.vpm = self.init_vision_module()
self.resampler = self.init_resampler(self.config.hidden_size, self.vpm.embed_dim)
def init_vision_module(self):
if self.config._attn_implementation == "flash_attention_2":
self.config.vision_config._attn_implementation = "flash_attention_2"
else:
# not suport sdpa
self.config.vision_config._attn_implementation = "eager"
model = SiglipVisionTransformer(self.config.vision_config)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
setattr(model, "embed_dim", model.embeddings.embed_dim)
setattr(model, "patch_size", model.embeddings.patch_size)
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True,
)
def get_vision_embedding(
self,
all_pixel_values: torch.Tensor,
patch_attention_mask: torch.Tensor,
tgt_sizes: torch.Tensor,
):
B = all_pixel_values.size(0)
vision_batch_size = self.config.vision_batch_size
if B > vision_batch_size:
hs = []
for i in range(0, B, vision_batch_size):
start_idx = i
end_idx = i + vision_batch_size
tmp_hs = self.vpm(
all_pixel_values[start_idx:end_idx],
patch_attention_mask=patch_attention_mask[start_idx:end_idx],
tgt_sizes=tgt_sizes[start_idx:end_idx],
).last_hidden_state
hs.append(tmp_hs)
vision_embedding = torch.cat(hs, dim=0)
else:
vision_embedding = self.vpm(
all_pixel_values,
patch_attention_mask=patch_attention_mask,
tgt_sizes=tgt_sizes,
).last_hidden_state
return vision_embedding
def _prepare_vision_input(self, images, patch_attention_mask, tgt_sizes):
# (TODO) Move to processor
device = self.vpm.device
dtype = self.vpm.dtype
pixel_values = torch.stack([(image.to(device) - 127.5) / 127.5 for image in images]).type(dtype)
patch_attention_mask = patch_attention_mask.to(device)
return pixel_values, patch_attention_mask, tgt_sizes
def forward(self, images, tgt_sizes, patch_attention_mask):
pixel_values, patch_attention_mask, tgt_sizes = self._prepare_vision_input(
images, patch_attention_mask, tgt_sizes
)
embedding = self.get_vision_embedding(pixel_values, patch_attention_mask, tgt_sizes)
embedding = self.resampler(embedding, tgt_sizes)
return embedding
class MegrezO(MegrezOPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = LlamaForCausalLM(config)
self.vision = VisionModel(config)
self.audio = AudioModel(config)
self.post_init()
self.processor = None
# Will be set in the training script
self.tune_vision = False
self.tune_audio = False
def _get_or_init_processor(self):
if self.processor is None:
self.processor = AutoProcessor.from_pretrained(
self.config._name_or_path,
trust_remote_code=True,
)
return self.processor
def convert_to_device(self, mini_batch):
for key in mini_batch:
if isinstance(mini_batch[key], torch.Tensor):
mini_batch[key] = mini_batch[key].to(self.device)
if isinstance(mini_batch[key], list):
return_value = []
for value in mini_batch[key]:
if isinstance(value, torch.Tensor):
value = value.to(self.device)
return_value.append(value)
mini_batch[key] = return_value
return mini_batch
def compose_embeddings(self, mini_batch):
position_ids = mini_batch["position_ids"]
input_ids = mini_batch["input_ids"]
image_encoding = mini_batch.get("image_encoding")
audio_encoding = mini_batch.get("audio_encoding")
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
embeddings_text = self.llm.model.embed_tokens(input_ids)
input_embeds = embeddings_text
if image_encoding:
pixel_values = image_encoding["pixel_values"]
tgt_sizes = image_encoding["tgt_sizes"]
patch_attention_mask = image_encoding["patch_attention_mask"]
bounds_image = image_encoding["image_bounds"]
embeddings_image = self.vision(pixel_values, tgt_sizes, patch_attention_mask=patch_attention_mask)
input_embeds = insert_image_embeddings(embeddings_text, embeddings_image, bounds_image)
elif self.training and self.tune_vision:
pixel_values = torch.zeros((3, 14, 3584), dtype=torch.float32)
tgt_sizes = torch.tensor([[16, 16]], dtype=torch.int64)
patch_attention_mask = torch.ones((3, 14), dtype=torch.float32)
embeddings_image = self.vision(pixel_values, tgt_sizes, patch_attention_mask=patch_attention_mask)
input_embeds += embeddings_image[0].sum() * 0.0
if audio_encoding:
embeddings_audio = self.audio(audio_encoding)
bounds_audio = audio_encoding["audio_bounds"]
input_embeds = insert_audio_embeddings(embeddings_text, embeddings_audio, bounds_audio)
elif self.training and self.tune_audio:
dummy_audio = torch.zeros((1, 128, 3000), dtype=torch.float32)
dummy_audio_lengths = torch.tensor([[125, 62]], dtype=torch.int32)
dummy_span_tokens = [64]
dummy_audio_encoding = [
{
"input_audios": dummy_audio,
"input_audio_lengths": dummy_audio_lengths,
"audio_span_tokens": dummy_span_tokens,
}
]
embeddings_audio = self.audio(dummy_audio_encoding)
input_embeds += embeddings_audio[0].sum() * 0.0
return input_ids, input_embeds, position_ids
def forward(self, data, **kwargs):
if self.training:
_, input_embeds, position_ids = self.compose_embeddings(data)
return self.llm.forward(
input_ids=None,
position_ids=position_ids,
inputs_embeds=input_embeds,
**kwargs,
)
return self.llm.forward(**kwargs)
def generate(
self,
input_ids,
position_ids,
attention_mask,
image_encoding=None,
audio_encoding=None,
**kwargs,
):
tokenizer = self._get_or_init_processor().tokenizer
data = {
"input_ids": input_ids,
"position_ids": position_ids,
"attention_mask": attention_mask,
"image_encoding": image_encoding,
"audio_encoding": audio_encoding,
}
data = self.convert_to_device(data)
input_ids, input_embeds, position_ids = self.compose_embeddings(data)
output = self.llm.generate(
inputs_embeds=input_embeds,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
**kwargs,
)
return output
def trim_stop_words(self, response, stop_words):
if stop_words:
for stop in stop_words:
idx = response.find(stop)
if idx != -1:
response = response[:idx]
return response
@torch.inference_mode()
def chat(self, input_msgs, processor=None, sampling=False, **kwargs):
if processor is None:
processor = self._get_or_init_processor()
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05,
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
generation_config.update(kwargs)
if generation_config.get("temperature") == 0:
generation_config["do_sample"] = False
data = processor(input_msgs)
output_ids = self.generate(**data, **generation_config)
tokenizer = processor.tokenizer
answer = tokenizer.decode(output_ids[0])
return answer