InferencetrainingAI
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -15,34 +15,39 @@ import torch
|
|
15 |
# prompt: compare face embediggs
|
16 |
|
17 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
class FaceRec:
|
21 |
def __init__(self):
|
22 |
-
self.foldername = '/home/emmanuel/Pictures/Webcam'
|
23 |
self.files = []
|
|
|
24 |
self.embeds = []
|
25 |
self.diff = []
|
26 |
self.ground_mathches = []
|
27 |
-
self.
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
print(self.image_pair)
|
38 |
|
39 |
|
40 |
-
else:
|
41 |
-
self.foldername = '/home/emmanuel/Pictures/webcam'
|
42 |
-
self.files = []
|
43 |
-
self.folder(attempt=True, folder=self.foldername)
|
44 |
-
|
45 |
-
|
46 |
|
47 |
|
48 |
def embeddings(self, image):
|
@@ -64,67 +69,71 @@ class FaceRec:
|
|
64 |
|
65 |
|
66 |
|
67 |
-
|
68 |
-
self.embeds = []
|
69 |
-
for faces in self.image_pair:
|
70 |
-
self.embeds.append(self.face_embed(self.foldername+'/'+faces[0], self.foldername+'/'+faces[1]))
|
71 |
-
|
72 |
-
return(0)
|
73 |
|
74 |
|
75 |
-
def
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
|
81 |
|
82 |
-
|
83 |
-
def expectation(self):
|
84 |
-
mean, std = torch.mean(torch.Tensor(self.diff[0:])), torch.std(torch.Tensor(self.diff[0:]))
|
85 |
-
distribute = torch.distributions.Normal(mean, std)
|
86 |
-
self.sampling = distribute.sample(sample_shape=(10,))
|
87 |
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
self.
|
92 |
-
return(self.compare())
|
93 |
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
def verify(self):
|
97 |
-
self.folder()
|
98 |
-
self.model()
|
99 |
-
self.expectation()
|
100 |
-
self.folder(attempt=False)
|
101 |
-
self.model()
|
102 |
|
103 |
-
fails = 0
|
104 |
-
success = 0
|
105 |
-
max_itter = 10
|
106 |
-
while max_itter >= 0:
|
107 |
-
for samples in self.sampling:
|
108 |
-
if self.diff[0] <= samples:
|
109 |
-
success = success+1
|
110 |
-
|
111 |
-
else:
|
112 |
-
fails = fails+1
|
113 |
|
114 |
-
|
|
|
115 |
|
116 |
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
else:
|
121 |
-
|
122 |
|
123 |
|
124 |
-
|
125 |
|
126 |
|
127 |
|
128 |
Recognition = FaceRec()
|
129 |
-
print(Recognition.
|
|
|
|
|
130 |
```
|
|
|
15 |
# prompt: compare face embediggs
|
16 |
|
17 |
```
|
18 |
+
import os
|
19 |
+
import cv2
|
20 |
+
from insightface.app import FaceAnalysis
|
21 |
+
import torch
|
22 |
+
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
|
26 |
+
# prompt: compare face embediggs
|
27 |
+
|
28 |
+
|
29 |
|
30 |
|
31 |
class FaceRec:
|
32 |
def __init__(self):
|
33 |
+
self.foldername = '/home/emmanuel-nsanga/Pictures/Webcam'
|
34 |
self.files = []
|
35 |
+
self.files_attempt = []
|
36 |
self.embeds = []
|
37 |
self.diff = []
|
38 |
self.ground_mathches = []
|
39 |
+
self.sample_true = []
|
40 |
+
self.sample_attemt = []
|
41 |
+
self.folder_attempt='/home/emmanuel-nsanga/Pictures/Webcam/'
|
42 |
+
self.folder_ground = '/home/emmanuel-nsanga/Pictures/webcam/'
|
43 |
+
self.folder_camera = '/home/emmanuel-nsanga/Pictures/camera/'
|
44 |
+
self.files_ground = [self.folder_ground+files for files in os.listdir(self.folder_ground)]
|
45 |
+
self.files_attempt = [self.folder_attempt+files for files in os.listdir(self.folder_attempt)]
|
46 |
+
self.files_camera = [self.folder_camera+files for files in os.listdir(self.folder_camera)]
|
47 |
+
self.zip_ground = list(zip(self.files_ground, self.files_attempt))
|
48 |
+
self.zip_attempt = list(zip(self.files_attempt, self.files_camera))
|
|
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
def embeddings(self, image):
|
|
|
69 |
|
70 |
|
71 |
|
72 |
+
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
+
def expectation(self, sample_data):
|
76 |
+
mean, std = torch.mean(sample_data), torch.std(sample_data)
|
77 |
+
distribute = torch.distributions.Normal(mean, std)
|
78 |
+
return(distribute.sample(sample_shape=(10,)))
|
79 |
|
80 |
|
81 |
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
def sim_distribution(self):
|
84 |
+
attempt_embeddings = self.zip_ground[0::]
|
85 |
+
ground_embeddings = self.zip_attempt[len(self.zip_ground)::]
|
86 |
+
|
87 |
+
|
88 |
|
89 |
+
w_r_t_g = self.zip_ground[0::]
|
90 |
+
w_r_t_c = self.zip_attempt
|
91 |
|
92 |
+
w_r_t_g = self.zip_ground[0::len(self.zip_ground)//2]
|
93 |
+
w_r_t_tr = self.zip_ground[len(self.zip_ground)//2::]
|
|
|
94 |
|
95 |
|
96 |
+
|
97 |
+
|
98 |
+
ground_embeddings = [self.face_embed(attempting, attempt) for attempting, attempt in w_r_t_g]
|
99 |
+
attempt_ground = [self.face_embed(attempting, attempt) for attempting, attempt in w_r_t_tr]
|
100 |
+
|
101 |
+
|
102 |
+
ground_embeddings_g = [self.face_embed(attempting, attempt) for attempting, attempt in w_r_t_g]
|
103 |
+
attempt_ground_c = [self.face_embed(attempting, attempt) for attempting, attempt in w_r_t_c]
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
self.sampling_ground = self.expectation(torch.Tensor(ground_embeddings))
|
108 |
+
self.sampling_attempt_g = self.expectation(torch.Tensor(attempt_ground))
|
109 |
|
110 |
|
111 |
+
self.sampling_ground = self.expectation(torch.Tensor(ground_embeddings_g))
|
112 |
+
self.sampling_attempt_c = self.expectation(torch.Tensor(attempt_ground_c))
|
113 |
+
|
114 |
+
return(self.sampling_ground, self.sampling_attempt_g, self.sampling_ground, self.sampling_attempt_c)
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
def model(self):
|
119 |
+
sim_distribution = self.sim_distribution()
|
120 |
+
xy = torch.mean(torch.Tensor([x-y for x, y in zip(sim_distribution[2], sim_distribution[3])]))
|
121 |
+
print(xy.item())
|
122 |
+
|
123 |
+
if xy.item() < 0.5:
|
124 |
+
print(True)
|
125 |
+
|
126 |
|
127 |
else:
|
128 |
+
print(False)
|
129 |
|
130 |
|
131 |
+
|
132 |
|
133 |
|
134 |
|
135 |
Recognition = FaceRec()
|
136 |
+
print(Recognition.model())
|
137 |
+
|
138 |
+
|
139 |
```
|