Upload 9 files
Browse files- model/layers/__init__.py +11 -0
- model/layers/attention.py +89 -0
- model/layers/block.py +260 -0
- model/layers/dino_head.py +58 -0
- model/layers/drop_path.py +34 -0
- model/layers/layer_scale.py +27 -0
- model/layers/mlp.py +40 -0
- model/layers/patch_embed.py +88 -0
- model/layers/swiglu_ffn.py +72 -0
model/layers/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
from .dino_head import DINOHead
|
| 7 |
+
from .mlp import Mlp
|
| 8 |
+
from .patch_embed import PatchEmbed
|
| 9 |
+
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
|
| 10 |
+
from .block import NestedTensorBlock
|
| 11 |
+
from .attention import MemEffAttention
|
model/layers/attention.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# References:
|
| 7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
| 9 |
+
|
| 10 |
+
import logging
|
| 11 |
+
import os
|
| 12 |
+
import warnings
|
| 13 |
+
|
| 14 |
+
from torch import Tensor
|
| 15 |
+
from torch import nn
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
logger = logging.getLogger("dinov2")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
| 22 |
+
try:
|
| 23 |
+
if XFORMERS_ENABLED:
|
| 24 |
+
from xformers.ops import memory_efficient_attention, unbind
|
| 25 |
+
|
| 26 |
+
XFORMERS_AVAILABLE = True
|
| 27 |
+
warnings.warn("xFormers is available (Attention)")
|
| 28 |
+
else:
|
| 29 |
+
warnings.warn("xFormers is disabled (Attention)")
|
| 30 |
+
raise ImportError
|
| 31 |
+
except ImportError:
|
| 32 |
+
XFORMERS_AVAILABLE = False
|
| 33 |
+
warnings.warn("xFormers is not available (Attention)")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class Attention(nn.Module):
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
dim: int,
|
| 40 |
+
num_heads: int = 8,
|
| 41 |
+
qkv_bias: bool = False,
|
| 42 |
+
proj_bias: bool = True,
|
| 43 |
+
attn_drop: float = 0.0,
|
| 44 |
+
proj_drop: float = 0.0,
|
| 45 |
+
) -> None:
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.num_heads = num_heads
|
| 48 |
+
head_dim = dim // num_heads
|
| 49 |
+
self.scale = head_dim**-0.5
|
| 50 |
+
|
| 51 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 52 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 53 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
| 54 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 55 |
+
|
| 56 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 57 |
+
B, N, C = x.shape
|
| 58 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 59 |
+
|
| 60 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
| 61 |
+
attn = q @ k.transpose(-2, -1)
|
| 62 |
+
|
| 63 |
+
attn = attn.softmax(dim=-1)
|
| 64 |
+
attn = self.attn_drop(attn)
|
| 65 |
+
|
| 66 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 67 |
+
x = self.proj(x)
|
| 68 |
+
x = self.proj_drop(x)
|
| 69 |
+
return x
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class MemEffAttention(Attention):
|
| 73 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
| 74 |
+
if not XFORMERS_AVAILABLE:
|
| 75 |
+
if attn_bias is not None:
|
| 76 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
| 77 |
+
return super().forward(x)
|
| 78 |
+
|
| 79 |
+
B, N, C = x.shape
|
| 80 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 81 |
+
|
| 82 |
+
q, k, v = unbind(qkv, 2)
|
| 83 |
+
|
| 84 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
| 85 |
+
x = x.reshape([B, N, C])
|
| 86 |
+
|
| 87 |
+
x = self.proj(x)
|
| 88 |
+
x = self.proj_drop(x)
|
| 89 |
+
return x
|
model/layers/block.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# References:
|
| 7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
| 9 |
+
|
| 10 |
+
import logging
|
| 11 |
+
import os
|
| 12 |
+
from typing import Callable, List, Any, Tuple, Dict
|
| 13 |
+
import warnings
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
from torch import nn, Tensor
|
| 17 |
+
|
| 18 |
+
from .attention import Attention, MemEffAttention
|
| 19 |
+
from .drop_path import DropPath
|
| 20 |
+
from .layer_scale import LayerScale
|
| 21 |
+
from .mlp import Mlp
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
logger = logging.getLogger("dinov2")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
| 28 |
+
try:
|
| 29 |
+
if XFORMERS_ENABLED:
|
| 30 |
+
from xformers.ops import fmha, scaled_index_add, index_select_cat
|
| 31 |
+
|
| 32 |
+
XFORMERS_AVAILABLE = True
|
| 33 |
+
warnings.warn("xFormers is available (Block)")
|
| 34 |
+
else:
|
| 35 |
+
warnings.warn("xFormers is disabled (Block)")
|
| 36 |
+
raise ImportError
|
| 37 |
+
except ImportError:
|
| 38 |
+
XFORMERS_AVAILABLE = False
|
| 39 |
+
|
| 40 |
+
warnings.warn("xFormers is not available (Block)")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class Block(nn.Module):
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
dim: int,
|
| 47 |
+
num_heads: int,
|
| 48 |
+
mlp_ratio: float = 4.0,
|
| 49 |
+
qkv_bias: bool = False,
|
| 50 |
+
proj_bias: bool = True,
|
| 51 |
+
ffn_bias: bool = True,
|
| 52 |
+
drop: float = 0.0,
|
| 53 |
+
attn_drop: float = 0.0,
|
| 54 |
+
init_values=None,
|
| 55 |
+
drop_path: float = 0.0,
|
| 56 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
| 57 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
| 58 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
| 59 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
| 60 |
+
) -> None:
|
| 61 |
+
super().__init__()
|
| 62 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
| 63 |
+
self.norm1 = norm_layer(dim)
|
| 64 |
+
self.attn = attn_class(
|
| 65 |
+
dim,
|
| 66 |
+
num_heads=num_heads,
|
| 67 |
+
qkv_bias=qkv_bias,
|
| 68 |
+
proj_bias=proj_bias,
|
| 69 |
+
attn_drop=attn_drop,
|
| 70 |
+
proj_drop=drop,
|
| 71 |
+
)
|
| 72 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 73 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 74 |
+
|
| 75 |
+
self.norm2 = norm_layer(dim)
|
| 76 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 77 |
+
self.mlp = ffn_layer(
|
| 78 |
+
in_features=dim,
|
| 79 |
+
hidden_features=mlp_hidden_dim,
|
| 80 |
+
act_layer=act_layer,
|
| 81 |
+
drop=drop,
|
| 82 |
+
bias=ffn_bias,
|
| 83 |
+
)
|
| 84 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 85 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 86 |
+
|
| 87 |
+
self.sample_drop_ratio = drop_path
|
| 88 |
+
|
| 89 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 90 |
+
def attn_residual_func(x: Tensor) -> Tensor:
|
| 91 |
+
return self.ls1(self.attn(self.norm1(x)))
|
| 92 |
+
|
| 93 |
+
def ffn_residual_func(x: Tensor) -> Tensor:
|
| 94 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
| 95 |
+
|
| 96 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
| 97 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
| 98 |
+
x = drop_add_residual_stochastic_depth(
|
| 99 |
+
x,
|
| 100 |
+
residual_func=attn_residual_func,
|
| 101 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 102 |
+
)
|
| 103 |
+
x = drop_add_residual_stochastic_depth(
|
| 104 |
+
x,
|
| 105 |
+
residual_func=ffn_residual_func,
|
| 106 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 107 |
+
)
|
| 108 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
| 109 |
+
x = x + self.drop_path1(attn_residual_func(x))
|
| 110 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
| 111 |
+
else:
|
| 112 |
+
x = x + attn_residual_func(x)
|
| 113 |
+
x = x + ffn_residual_func(x)
|
| 114 |
+
return x
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def drop_add_residual_stochastic_depth(
|
| 118 |
+
x: Tensor,
|
| 119 |
+
residual_func: Callable[[Tensor], Tensor],
|
| 120 |
+
sample_drop_ratio: float = 0.0,
|
| 121 |
+
) -> Tensor:
|
| 122 |
+
# 1) extract subset using permutation
|
| 123 |
+
b, n, d = x.shape
|
| 124 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
| 125 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
| 126 |
+
x_subset = x[brange]
|
| 127 |
+
|
| 128 |
+
# 2) apply residual_func to get residual
|
| 129 |
+
residual = residual_func(x_subset)
|
| 130 |
+
|
| 131 |
+
x_flat = x.flatten(1)
|
| 132 |
+
residual = residual.flatten(1)
|
| 133 |
+
|
| 134 |
+
residual_scale_factor = b / sample_subset_size
|
| 135 |
+
|
| 136 |
+
# 3) add the residual
|
| 137 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
| 138 |
+
return x_plus_residual.view_as(x)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
| 142 |
+
b, n, d = x.shape
|
| 143 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
| 144 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
| 145 |
+
residual_scale_factor = b / sample_subset_size
|
| 146 |
+
return brange, residual_scale_factor
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
| 150 |
+
if scaling_vector is None:
|
| 151 |
+
x_flat = x.flatten(1)
|
| 152 |
+
residual = residual.flatten(1)
|
| 153 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
| 154 |
+
else:
|
| 155 |
+
x_plus_residual = scaled_index_add(
|
| 156 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
| 157 |
+
)
|
| 158 |
+
return x_plus_residual
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
| 165 |
+
"""
|
| 166 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
| 167 |
+
"""
|
| 168 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
| 169 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
| 170 |
+
if all_shapes not in attn_bias_cache.keys():
|
| 171 |
+
seqlens = []
|
| 172 |
+
for b, x in zip(batch_sizes, x_list):
|
| 173 |
+
for _ in range(b):
|
| 174 |
+
seqlens.append(x.shape[1])
|
| 175 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
| 176 |
+
attn_bias._batch_sizes = batch_sizes
|
| 177 |
+
attn_bias_cache[all_shapes] = attn_bias
|
| 178 |
+
|
| 179 |
+
if branges is not None:
|
| 180 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
| 181 |
+
else:
|
| 182 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
| 183 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
| 184 |
+
|
| 185 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def drop_add_residual_stochastic_depth_list(
|
| 189 |
+
x_list: List[Tensor],
|
| 190 |
+
residual_func: Callable[[Tensor, Any], Tensor],
|
| 191 |
+
sample_drop_ratio: float = 0.0,
|
| 192 |
+
scaling_vector=None,
|
| 193 |
+
) -> Tensor:
|
| 194 |
+
# 1) generate random set of indices for dropping samples in the batch
|
| 195 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
| 196 |
+
branges = [s[0] for s in branges_scales]
|
| 197 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
| 198 |
+
|
| 199 |
+
# 2) get attention bias and index+concat the tensors
|
| 200 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
| 201 |
+
|
| 202 |
+
# 3) apply residual_func to get residual, and split the result
|
| 203 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
| 204 |
+
|
| 205 |
+
outputs = []
|
| 206 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
| 207 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
| 208 |
+
return outputs
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class NestedTensorBlock(Block):
|
| 212 |
+
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
| 213 |
+
"""
|
| 214 |
+
x_list contains a list of tensors to nest together and run
|
| 215 |
+
"""
|
| 216 |
+
assert isinstance(self.attn, MemEffAttention)
|
| 217 |
+
|
| 218 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
| 219 |
+
|
| 220 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 221 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
| 222 |
+
|
| 223 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 224 |
+
return self.mlp(self.norm2(x))
|
| 225 |
+
|
| 226 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
| 227 |
+
x_list,
|
| 228 |
+
residual_func=attn_residual_func,
|
| 229 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 230 |
+
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
| 231 |
+
)
|
| 232 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
| 233 |
+
x_list,
|
| 234 |
+
residual_func=ffn_residual_func,
|
| 235 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 236 |
+
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
| 237 |
+
)
|
| 238 |
+
return x_list
|
| 239 |
+
else:
|
| 240 |
+
|
| 241 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 242 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
| 243 |
+
|
| 244 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
| 245 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
| 246 |
+
|
| 247 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
| 248 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
| 249 |
+
x = x + ffn_residual_func(x)
|
| 250 |
+
return attn_bias.split(x)
|
| 251 |
+
|
| 252 |
+
def forward(self, x_or_x_list):
|
| 253 |
+
if isinstance(x_or_x_list, Tensor):
|
| 254 |
+
return super().forward(x_or_x_list)
|
| 255 |
+
elif isinstance(x_or_x_list, list):
|
| 256 |
+
if not XFORMERS_AVAILABLE:
|
| 257 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
| 258 |
+
return self.forward_nested(x_or_x_list)
|
| 259 |
+
else:
|
| 260 |
+
raise AssertionError
|
model/layers/dino_head.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.nn.init import trunc_normal_
|
| 9 |
+
from torch.nn.utils import weight_norm
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class DINOHead(nn.Module):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
in_dim,
|
| 16 |
+
out_dim,
|
| 17 |
+
use_bn=False,
|
| 18 |
+
nlayers=3,
|
| 19 |
+
hidden_dim=2048,
|
| 20 |
+
bottleneck_dim=256,
|
| 21 |
+
mlp_bias=True,
|
| 22 |
+
):
|
| 23 |
+
super().__init__()
|
| 24 |
+
nlayers = max(nlayers, 1)
|
| 25 |
+
self.mlp = _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=hidden_dim, use_bn=use_bn, bias=mlp_bias)
|
| 26 |
+
self.apply(self._init_weights)
|
| 27 |
+
self.last_layer = weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
|
| 28 |
+
self.last_layer.weight_g.data.fill_(1)
|
| 29 |
+
|
| 30 |
+
def _init_weights(self, m):
|
| 31 |
+
if isinstance(m, nn.Linear):
|
| 32 |
+
trunc_normal_(m.weight, std=0.02)
|
| 33 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 34 |
+
nn.init.constant_(m.bias, 0)
|
| 35 |
+
|
| 36 |
+
def forward(self, x):
|
| 37 |
+
x = self.mlp(x)
|
| 38 |
+
eps = 1e-6 if x.dtype == torch.float16 else 1e-12
|
| 39 |
+
x = nn.functional.normalize(x, dim=-1, p=2, eps=eps)
|
| 40 |
+
x = self.last_layer(x)
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=None, use_bn=False, bias=True):
|
| 45 |
+
if nlayers == 1:
|
| 46 |
+
return nn.Linear(in_dim, bottleneck_dim, bias=bias)
|
| 47 |
+
else:
|
| 48 |
+
layers = [nn.Linear(in_dim, hidden_dim, bias=bias)]
|
| 49 |
+
if use_bn:
|
| 50 |
+
layers.append(nn.BatchNorm1d(hidden_dim))
|
| 51 |
+
layers.append(nn.GELU())
|
| 52 |
+
for _ in range(nlayers - 2):
|
| 53 |
+
layers.append(nn.Linear(hidden_dim, hidden_dim, bias=bias))
|
| 54 |
+
if use_bn:
|
| 55 |
+
layers.append(nn.BatchNorm1d(hidden_dim))
|
| 56 |
+
layers.append(nn.GELU())
|
| 57 |
+
layers.append(nn.Linear(hidden_dim, bottleneck_dim, bias=bias))
|
| 58 |
+
return nn.Sequential(*layers)
|
model/layers/drop_path.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# References:
|
| 7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
from torch import nn
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
| 15 |
+
if drop_prob == 0.0 or not training:
|
| 16 |
+
return x
|
| 17 |
+
keep_prob = 1 - drop_prob
|
| 18 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 19 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 20 |
+
if keep_prob > 0.0:
|
| 21 |
+
random_tensor.div_(keep_prob)
|
| 22 |
+
output = x * random_tensor
|
| 23 |
+
return output
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class DropPath(nn.Module):
|
| 27 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 28 |
+
|
| 29 |
+
def __init__(self, drop_prob=None):
|
| 30 |
+
super(DropPath, self).__init__()
|
| 31 |
+
self.drop_prob = drop_prob
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
return drop_path(x, self.drop_prob, self.training)
|
model/layers/layer_scale.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
|
| 7 |
+
|
| 8 |
+
from typing import Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch import Tensor
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class LayerScale(nn.Module):
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
dim: int,
|
| 19 |
+
init_values: Union[float, Tensor] = 1e-5,
|
| 20 |
+
inplace: bool = False,
|
| 21 |
+
) -> None:
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.inplace = inplace
|
| 24 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
| 25 |
+
|
| 26 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 27 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
model/layers/mlp.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# References:
|
| 7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
from typing import Callable, Optional
|
| 12 |
+
|
| 13 |
+
from torch import Tensor, nn
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class Mlp(nn.Module):
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
in_features: int,
|
| 20 |
+
hidden_features: Optional[int] = None,
|
| 21 |
+
out_features: Optional[int] = None,
|
| 22 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
| 23 |
+
drop: float = 0.0,
|
| 24 |
+
bias: bool = True,
|
| 25 |
+
) -> None:
|
| 26 |
+
super().__init__()
|
| 27 |
+
out_features = out_features or in_features
|
| 28 |
+
hidden_features = hidden_features or in_features
|
| 29 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
| 30 |
+
self.act = act_layer()
|
| 31 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
| 32 |
+
self.drop = nn.Dropout(drop)
|
| 33 |
+
|
| 34 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 35 |
+
x = self.fc1(x)
|
| 36 |
+
x = self.act(x)
|
| 37 |
+
x = self.drop(x)
|
| 38 |
+
x = self.fc2(x)
|
| 39 |
+
x = self.drop(x)
|
| 40 |
+
return x
|
model/layers/patch_embed.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# References:
|
| 7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
| 9 |
+
|
| 10 |
+
from typing import Callable, Optional, Tuple, Union
|
| 11 |
+
|
| 12 |
+
from torch import Tensor
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def make_2tuple(x):
|
| 17 |
+
if isinstance(x, tuple):
|
| 18 |
+
assert len(x) == 2
|
| 19 |
+
return x
|
| 20 |
+
|
| 21 |
+
assert isinstance(x, int)
|
| 22 |
+
return (x, x)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class PatchEmbed(nn.Module):
|
| 26 |
+
"""
|
| 27 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
img_size: Image size.
|
| 31 |
+
patch_size: Patch token size.
|
| 32 |
+
in_chans: Number of input image channels.
|
| 33 |
+
embed_dim: Number of linear projection output channels.
|
| 34 |
+
norm_layer: Normalization layer.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
| 40 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 41 |
+
in_chans: int = 3,
|
| 42 |
+
embed_dim: int = 768,
|
| 43 |
+
norm_layer: Optional[Callable] = None,
|
| 44 |
+
flatten_embedding: bool = True,
|
| 45 |
+
) -> None:
|
| 46 |
+
super().__init__()
|
| 47 |
+
|
| 48 |
+
image_HW = make_2tuple(img_size)
|
| 49 |
+
patch_HW = make_2tuple(patch_size)
|
| 50 |
+
patch_grid_size = (
|
| 51 |
+
image_HW[0] // patch_HW[0],
|
| 52 |
+
image_HW[1] // patch_HW[1],
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
self.img_size = image_HW
|
| 56 |
+
self.patch_size = patch_HW
|
| 57 |
+
self.patches_resolution = patch_grid_size
|
| 58 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
| 59 |
+
|
| 60 |
+
self.in_chans = in_chans
|
| 61 |
+
self.embed_dim = embed_dim
|
| 62 |
+
|
| 63 |
+
self.flatten_embedding = flatten_embedding
|
| 64 |
+
|
| 65 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
| 66 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 67 |
+
|
| 68 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 69 |
+
_, _, H, W = x.shape
|
| 70 |
+
patch_H, patch_W = self.patch_size
|
| 71 |
+
|
| 72 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
| 73 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
| 74 |
+
|
| 75 |
+
x = self.proj(x) # B C H W
|
| 76 |
+
H, W = x.size(2), x.size(3)
|
| 77 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
| 78 |
+
x = self.norm(x)
|
| 79 |
+
if not self.flatten_embedding:
|
| 80 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
def flops(self) -> float:
|
| 84 |
+
Ho, Wo = self.patches_resolution
|
| 85 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
| 86 |
+
if self.norm is not None:
|
| 87 |
+
flops += Ho * Wo * self.embed_dim
|
| 88 |
+
return flops
|
model/layers/swiglu_ffn.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from typing import Callable, Optional
|
| 8 |
+
import warnings
|
| 9 |
+
|
| 10 |
+
from torch import Tensor, nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class SwiGLUFFN(nn.Module):
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
in_features: int,
|
| 18 |
+
hidden_features: Optional[int] = None,
|
| 19 |
+
out_features: Optional[int] = None,
|
| 20 |
+
act_layer: Callable[..., nn.Module] = None,
|
| 21 |
+
drop: float = 0.0,
|
| 22 |
+
bias: bool = True,
|
| 23 |
+
) -> None:
|
| 24 |
+
super().__init__()
|
| 25 |
+
out_features = out_features or in_features
|
| 26 |
+
hidden_features = hidden_features or in_features
|
| 27 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
| 28 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
| 29 |
+
|
| 30 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 31 |
+
x12 = self.w12(x)
|
| 32 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
| 33 |
+
hidden = F.silu(x1) * x2
|
| 34 |
+
return self.w3(hidden)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
| 38 |
+
try:
|
| 39 |
+
if XFORMERS_ENABLED:
|
| 40 |
+
from xformers.ops import SwiGLU
|
| 41 |
+
|
| 42 |
+
XFORMERS_AVAILABLE = True
|
| 43 |
+
warnings.warn("xFormers is available (SwiGLU)")
|
| 44 |
+
else:
|
| 45 |
+
warnings.warn("xFormers is disabled (SwiGLU)")
|
| 46 |
+
raise ImportError
|
| 47 |
+
except ImportError:
|
| 48 |
+
SwiGLU = SwiGLUFFN
|
| 49 |
+
XFORMERS_AVAILABLE = False
|
| 50 |
+
|
| 51 |
+
warnings.warn("xFormers is not available (SwiGLU)")
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class SwiGLUFFNFused(SwiGLU):
|
| 55 |
+
def __init__(
|
| 56 |
+
self,
|
| 57 |
+
in_features: int,
|
| 58 |
+
hidden_features: Optional[int] = None,
|
| 59 |
+
out_features: Optional[int] = None,
|
| 60 |
+
act_layer: Callable[..., nn.Module] = None,
|
| 61 |
+
drop: float = 0.0,
|
| 62 |
+
bias: bool = True,
|
| 63 |
+
) -> None:
|
| 64 |
+
out_features = out_features or in_features
|
| 65 |
+
hidden_features = hidden_features or in_features
|
| 66 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
| 67 |
+
super().__init__(
|
| 68 |
+
in_features=in_features,
|
| 69 |
+
hidden_features=hidden_features,
|
| 70 |
+
out_features=out_features,
|
| 71 |
+
bias=bias,
|
| 72 |
+
)
|