InPeerReview commited on
Commit
486e9a7
·
verified ·
1 Parent(s): 8266e5f

Upload decoder.py

Browse files
Files changed (1) hide show
  1. model/decoder.py +301 -0
model/decoder.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from einops import rearrange
5
+ from model.utils import weight_init
6
+
7
+
8
+
9
+ def drop_path(x, drop_prob: float = 0., training: bool = False):
10
+ if drop_prob == 0. or not training:
11
+ return x
12
+ keep_prob = 1 - drop_prob
13
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1)
14
+ random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
15
+ random_tensor.floor_() # binarize
16
+ output = x.div(keep_prob) * random_tensor
17
+ return output
18
+
19
+
20
+ class DropPath(nn.Module):
21
+ def __init__(self, drop_prob=None):
22
+ super(DropPath, self).__init__()
23
+ self.drop_prob = drop_prob
24
+
25
+ def forward(self, x):
26
+ return drop_path(x, self.drop_prob, self.training)
27
+
28
+
29
+ class Mlp(nn.Module):
30
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
31
+ super().__init__()
32
+ out_features = out_features or in_features
33
+ hidden_features = hidden_features or in_features
34
+ self.fc1 = nn.Linear(in_features, hidden_features)
35
+ self.act = act_layer()
36
+ self.fc2 = nn.Linear(hidden_features, out_features)
37
+ self.drop = nn.Dropout(drop)
38
+
39
+ def forward(self, x):
40
+ x = self.fc1(x)
41
+ x = self.act(x)
42
+ x = self.drop(x)
43
+ x = self.fc2(x)
44
+ x = self.drop(x)
45
+ return x
46
+
47
+
48
+
49
+ class CrossAttention(nn.Module):
50
+ def __init__(self, dim1, dim2, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
51
+ super().__init__()
52
+ self.num_heads = num_heads
53
+ head_dim = dim1 // num_heads
54
+ self.scale = head_dim ** -0.5
55
+
56
+ self.q = nn.Linear(dim1, dim1, bias=qkv_bias)
57
+ self.kv = nn.Linear(dim2, dim1 * 2, bias=qkv_bias)
58
+
59
+ self.attn_drop = nn.Dropout(attn_drop)
60
+ self.proj = nn.Linear(dim1, dim1)
61
+ self.proj_drop = nn.Dropout(proj_drop)
62
+
63
+ def forward(self, x, y):
64
+ B1, N1, C1 = x.shape
65
+ B2, N2, C2 = y.shape
66
+
67
+ q = self.q(x).reshape(B1, N1, self.num_heads, C1 // self.num_heads).permute(0, 2, 1, 3)
68
+ kv = self.kv(y).reshape(B2, N2, 2, self.num_heads, C1 // self.num_heads).permute(2, 0, 3, 1, 4)
69
+
70
+ k, v = kv[0], kv[1]
71
+
72
+ attn = (q @ k.transpose(-2, -1)) * self.scale
73
+ attn = attn.softmax(dim=-1)
74
+ attn = self.attn_drop(attn)
75
+
76
+ x = (attn @ v).transpose(1, 2).reshape(B1, N1, C1)
77
+
78
+ x = self.proj(x)
79
+ x = self.proj_drop(x)
80
+
81
+ return x
82
+
83
+
84
+
85
+ class Block(nn.Module):
86
+ def __init__(self, dim1, dim2, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
87
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
88
+ super().__init__()
89
+ self.norm1 = norm_layer(dim1)
90
+ self.norm2 = norm_layer(dim2)
91
+ self.attn = CrossAttention(dim1, dim2, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
92
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
93
+ self.norm3 = norm_layer(dim1)
94
+ mlp_hidden_dim = int(dim1 * mlp_ratio)
95
+ self.mlp = Mlp(in_features=dim1, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
96
+
97
+ def forward(self, x, y):
98
+ x = x + self.drop_path(self.attn(self.norm1(x), self.norm2(y)))
99
+ x = x + self.drop_path(self.mlp(self.norm3(x)))
100
+ return x
101
+
102
+
103
+
104
+ class ContentAwareAggregation(nn.Module):
105
+ def __init__(self, low_dim, high_dim):
106
+ super().__init__()
107
+ self.project = nn.Sequential(
108
+ nn.Conv2d(high_dim, low_dim, kernel_size=1),
109
+ nn.BatchNorm2d(low_dim),
110
+ nn.ReLU(inplace=True)
111
+ )
112
+
113
+ self.attn_gen = nn.Sequential(
114
+ nn.Conv2d(low_dim, low_dim, kernel_size=3, padding=1, groups=low_dim),
115
+ nn.BatchNorm2d(low_dim),
116
+ nn.ReLU(inplace=True),
117
+ nn.Conv2d(low_dim, low_dim, kernel_size=1),
118
+ nn.Sigmoid()
119
+ )
120
+
121
+ def forward(self, low_feat, high_feat):
122
+ high_feat = F.interpolate(high_feat, size=low_feat.shape[2:], mode='bilinear', align_corners=False)
123
+ high_feat = self.project(high_feat)
124
+ attn = self.attn_gen(low_feat + high_feat)
125
+ out = attn * low_feat + high_feat
126
+ return out
127
+
128
+
129
+
130
+ class FeatureInjector(nn.Module):
131
+ def __init__(self, dim1=384, dim2=[64, 128, 256], num_heads=8, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
132
+ drop_path=0., act_layer=nn.ReLU, norm_layer=nn.LayerNorm):
133
+ super().__init__()
134
+
135
+ self.c2_c5 = Block(dim1, dim2[0], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer)
136
+ self.c3_c5 = Block(dim1, dim2[1], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer)
137
+ self.c4_c5 = Block(dim1, dim2[2], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer)
138
+
139
+ self.fuse = nn.Conv2d(dim1*3, dim1, 1, bias=False)
140
+ self.caa = ContentAwareAggregation(dim1, dim1)
141
+
142
+ weight_init(self)
143
+
144
+ def base_forward(self, c2, c3, c4, c5):
145
+ H, W = c5.shape[2:]
146
+
147
+ c2 = rearrange(c2, 'b c h w -> b (h w) c')
148
+ c3 = rearrange(c3, 'b c h w -> b (h w) c')
149
+ c4 = rearrange(c4, 'b c h w -> b (h w) c')
150
+ c5 = rearrange(c5, 'b c h w -> b (h w) c')
151
+
152
+ _c2 = self.c2_c5(c5, c2)
153
+ _c2 = rearrange(_c2, 'b (h w) c -> b c h w', h=H, w=W)
154
+
155
+ _c3 = self.c3_c5(c5, c3)
156
+ _c3 = rearrange(_c3, 'b (h w) c -> b c h w', h=H, w=W)
157
+
158
+ _c4 = self.c4_c5(c5, c4)
159
+ _c4 = rearrange(_c4, 'b (h w) c -> b c h w', h=H, w=W)
160
+
161
+ _c5 = self.fuse(torch.cat([_c2, _c3, _c4], dim=1))
162
+
163
+ return _c5
164
+
165
+ def forward(self, fx, fy):
166
+ _c5x = self.base_forward(fx[0], fx[1], fx[2], fx[3])
167
+ _c5y = self.base_forward(fy[0], fy[1], fy[2], fy[3])
168
+
169
+
170
+ _c5x = self.caa(_c5x, _c5y)
171
+ _c5y = self.caa(_c5y, _c5x)
172
+
173
+ return _c5x, _c5y
174
+
175
+
176
+ class DualAttentionGate(nn.Module):
177
+ def __init__(self, channels, ratio=8):
178
+ super().__init__()
179
+ self.channel_att = nn.Sequential(
180
+ nn.AdaptiveAvgPool2d(1), # [B,C,1,1]
181
+ nn.Conv2d(channels, channels // ratio, 1, bias=False), # [B,C/8,1,1]
182
+ nn.ReLU(),
183
+ nn.Conv2d(channels // ratio, channels, 1, bias=False), # [B,C,1,1]
184
+ nn.Sigmoid()
185
+ )
186
+
187
+ self.spatial_att = nn.Sequential(
188
+ nn.Conv2d(2, 1, 7, padding=3, bias=False), # 输入2通道(mean+std)
189
+ nn.Sigmoid() # 输出[B,1,H,W]
190
+ )
191
+
192
+ def forward(self, x):
193
+
194
+ c_att = self.channel_att(x)
195
+ mean = torch.mean(x, dim=1, keepdim=True)
196
+ std = torch.std(x, dim=1, keepdim=True)
197
+ s_att = self.spatial_att(torch.cat([mean, std], dim=1))
198
+
199
+
200
+ return x * c_att * s_att
201
+
202
+
203
+ class SimplifiedFGFM(nn.Module):
204
+ def __init__(self, in_channels, out_channels):
205
+ super().__init__()
206
+ self.down = nn.Conv2d(in_channels, out_channels, 1, bias=False)
207
+ self.flow_make = nn.Conv2d(out_channels * 2, 4, 3, padding=1, bias=False)
208
+ self.dual_att = DualAttentionGate(out_channels)
209
+
210
+ def flow_warp(self, input, flow, size):
211
+
212
+ out_h, out_w = size
213
+ n, c, h, w = input.size()
214
+
215
+ norm = torch.tensor([[[[out_w, out_h]]]]).type_as(input).to(input.device)
216
+ grid = torch.meshgrid(
217
+ torch.linspace(-1.0, 1.0, out_h),
218
+ torch.linspace(-1.0, 1.0, out_w),
219
+ indexing='ij'
220
+ )
221
+ grid = torch.stack((grid[1], grid[0]), 2).repeat(n, 1, 1, 1).type_as(input)
222
+ grid = grid + flow.permute(0, 2, 3, 1) / norm
223
+
224
+ return F.grid_sample(input, grid, align_corners=True)
225
+
226
+ def forward(self, lowres_feature, highres_feature):
227
+
228
+ l_feature = self.down(lowres_feature)
229
+ l_feature_up = F.interpolate(l_feature, size=highres_feature.shape[2:], mode='bilinear', align_corners=True)
230
+
231
+ flow = self.flow_make(torch.cat([l_feature_up, highres_feature], dim=1))
232
+ flow_l, flow_h = flow[:, :2, :, :], flow[:, 2:, :, :]
233
+
234
+ l_warp = self.flow_warp(l_feature, flow_l, highres_feature.shape[2:])
235
+ h_warp = self.flow_warp(highres_feature, flow_h, highres_feature.shape[2:])
236
+
237
+
238
+ fused = self.dual_att(l_warp + h_warp)
239
+ return fused
240
+
241
+
242
+
243
+ class Decoder(nn.Module):
244
+ def __init__(self, in_dim=[64, 128, 256, 384], decay=4, num_class=1):
245
+ super().__init__()
246
+ c2_channel, c3_channel, c4_channel, c5_channel = in_dim
247
+
248
+ self.structure_enhance = FeatureInjector(dim1=c5_channel)
249
+
250
+
251
+ self.fgfm_c4 = SimplifiedFGFM(in_channels=c5_channel, out_channels=c4_channel)
252
+ self.fgfm_c3 = SimplifiedFGFM(in_channels=c4_channel, out_channels=c3_channel)
253
+ self.fgfm_c2 = SimplifiedFGFM(in_channels=c3_channel, out_channels=c2_channel)
254
+
255
+
256
+ self.classfier = nn.Sequential(
257
+ nn.ConvTranspose2d(c2_channel, c2_channel, kernel_size=4, stride=2, padding=1),
258
+ nn.Conv2d(c2_channel, num_class, 3, 1, padding=1, bias=False)
259
+ )
260
+
261
+
262
+ self.mlp = nn.ModuleList([
263
+ nn.Sequential(
264
+ nn.Conv2d(dim * 3, dim // decay, 1, bias=False),
265
+ nn.BatchNorm2d(dim // decay),
266
+ nn.ReLU(),
267
+ nn.Conv2d(dim // decay, dim // decay, 3, 1, padding=1, bias=False),
268
+ nn.ReLU(),
269
+ nn.Conv2d(dim // decay, dim // decay, 3, 1, padding=1, bias=False),
270
+ nn.ReLU(),
271
+ nn.Conv2d(dim // decay, dim, 3, 1, padding=1, bias=False)
272
+ ) for dim in in_dim
273
+ ])
274
+
275
+ def difference_modeling(self, x, y, block):
276
+ f = torch.cat([x, y, torch.abs(x - y)], dim=1)
277
+ return block(f)
278
+
279
+ def forward(self, fx, fy):
280
+ c2x, c3x, c4x = fx[:-1]
281
+ c2y, c3y, c4y = fy[:-1]
282
+
283
+
284
+ c5x, c5y = self.structure_enhance(fx, fy)
285
+
286
+
287
+ c2 = self.difference_modeling(c2x, c2y, self.mlp[0])
288
+ c3 = self.difference_modeling(c3x, c3y, self.mlp[1])
289
+ c4 = self.difference_modeling(c4x, c4y, self.mlp[2])
290
+ c5 = self.difference_modeling(c5x, c5y, self.mlp[3])
291
+
292
+
293
+ c4f = self.fgfm_c4(c5, c4)
294
+ c3f = self.fgfm_c3(c4f, c3)
295
+ c2f = self.fgfm_c2(c3f, c2)
296
+
297
+
298
+ pred = self.classfier(c2f)
299
+ pred_mask = torch.sigmoid(pred)
300
+
301
+ return pred_mask