Upload 2 files
Browse files
rscd/models/decoderheads/__init__.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from rscd.models.decoderheads.stnet import STNet
|
| 2 |
+
from rscd.models.decoderheads.cdmask import CDMask
|
| 3 |
+
from rscd.models.decoderheads.DDLNet import DDLNet
|
| 4 |
+
|
| 5 |
+
from rscd.models.decoderheads.BIThead import BASE_Transformer
|
| 6 |
+
from rscd.models.decoderheads.SNUNet_ECAM import ECAM
|
| 7 |
+
from rscd.models.decoderheads.CFde import ChangeFormer_DE
|
| 8 |
+
from rscd.models.decoderheads.lgpnet_b import LGPNet_b
|
| 9 |
+
from rscd.models.decoderheads.SARASNet import Change_detection
|
| 10 |
+
from rscd.models.decoderheads.AFCF3D_de import AFCD3D_decoder
|
| 11 |
+
from rscd.models.decoderheads.USSFCNet import USSFCNet_decoder
|
| 12 |
+
|
| 13 |
+
from rscd.models.decoderheads.mamba_cttf import CTTF
|
| 14 |
+
from rscd.models.decoderheads.xformer3 import CDXLSTM3
|
| 15 |
+
from rscd.models.decoderheads.detector import changedetector
|
| 16 |
+
from rscd.models.decoderheads.ChangeMambaDecoder import CMDecoder
|
| 17 |
+
|
| 18 |
+
from rscd.models.decoderheads.none import none_class
|
| 19 |
+
|
| 20 |
+
from rscd.models.decoderheads.a2net import A2Net
|
| 21 |
+
|
| 22 |
+
from rscd.models.decoderheads.nnUNetTrainer_WNet2D import WNet2D
|
| 23 |
+
from rscd.models.decoderheads.nnUNetTrainer_WNet2D_L import WNet2D_L
|
| 24 |
+
from rscd.models.decoderheads.Sea_WNet2D import Sea_WNet
|
| 25 |
+
|
| 26 |
+
from rscd.models.decoderheads.fc_ef import FC_ef
|
| 27 |
+
from rscd.models.decoderheads.fc_siam_conc import FC_siam_conc
|
| 28 |
+
from rscd.models.decoderheads.fc_sima_diff import FC_siam_diff
|
| 29 |
+
|
| 30 |
+
from rscd.models.decoderheads.IFnet import DSIFN
|
| 31 |
+
from rscd.models.decoderheads.LCD import LCD_Net
|
| 32 |
+
|
| 33 |
+
from rscd.models.decoderheads.acabfnet import CrossNet
|
| 34 |
+
from rscd.models.decoderheads.paformer import Paformer
|
rscd/models/decoderheads/mamba_cttf.py
ADDED
|
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.cuda.amp import autocast
|
| 4 |
+
from rscd.models.decoderheads.vision_lstm import ViLBlock, SequenceTraversal
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from functools import partial
|
| 7 |
+
from rscd.models.backbones.lib_mamba.vmambanew import SS2D
|
| 8 |
+
import pywt
|
| 9 |
+
|
| 10 |
+
class PA(nn.Module):
|
| 11 |
+
def __init__(self, dim, norm_layer, act_layer):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.p_conv = nn.Sequential(
|
| 14 |
+
nn.Conv2d(dim, dim*4, 1, bias=False),
|
| 15 |
+
norm_layer(dim*4),
|
| 16 |
+
act_layer(),
|
| 17 |
+
nn.Conv2d(dim*4, dim, 1, bias=False)
|
| 18 |
+
)
|
| 19 |
+
self.gate_fn = nn.Sigmoid()
|
| 20 |
+
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
att = self.p_conv(x)
|
| 23 |
+
x = x * self.gate_fn(att)
|
| 24 |
+
|
| 25 |
+
return x
|
| 26 |
+
|
| 27 |
+
class Mish(nn.Module):
|
| 28 |
+
def __init__(self):
|
| 29 |
+
super().__init__()
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
return x * torch.tanh(F.softplus(x))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class _ScaleModule(nn.Module):
|
| 36 |
+
def __init__(self, dims, init_scale=1.0):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.weight = nn.Parameter(torch.ones(*dims) * init_scale)
|
| 39 |
+
|
| 40 |
+
def forward(self, x):
|
| 41 |
+
return torch.mul(self.weight, x)
|
| 42 |
+
|
| 43 |
+
def create_wavelet_filter(wave, in_size, out_size, dtype=torch.float):
|
| 44 |
+
w = pywt.Wavelet(wave)
|
| 45 |
+
dec_hi = torch.tensor(w.dec_hi[::-1], dtype=dtype)
|
| 46 |
+
dec_lo = torch.tensor(w.dec_lo[::-1], dtype=dtype)
|
| 47 |
+
dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),
|
| 48 |
+
dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),
|
| 49 |
+
dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),
|
| 50 |
+
dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)
|
| 51 |
+
dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)
|
| 52 |
+
rec_hi = torch.tensor(w.rec_hi[::-1], dtype=dtype).flip(dims=[0])
|
| 53 |
+
rec_lo = torch.tensor(w.rec_lo[::-1], dtype=dtype).flip(dims=[0])
|
| 54 |
+
rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),
|
| 55 |
+
rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),
|
| 56 |
+
rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),
|
| 57 |
+
rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)
|
| 58 |
+
rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)
|
| 59 |
+
return dec_filters, rec_filters
|
| 60 |
+
|
| 61 |
+
def wavelet_transform(x, filters):
|
| 62 |
+
b, c, h, w = x.shape
|
| 63 |
+
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
|
| 64 |
+
x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)
|
| 65 |
+
x = x.reshape(b, c, 4, h // 2, w // 2)
|
| 66 |
+
return x
|
| 67 |
+
|
| 68 |
+
def inverse_wavelet_transform(x, filters):
|
| 69 |
+
b, c, _, h_half, w_half = x.shape
|
| 70 |
+
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
|
| 71 |
+
x = x.reshape(b, c * 4, h_half, w_half)
|
| 72 |
+
x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)
|
| 73 |
+
return x
|
| 74 |
+
|
| 75 |
+
class MBWTConv2d(nn.Module):
|
| 76 |
+
def __init__(self, in_channels, kernel_size=5, wt_levels=1, wt_type='db1', ssm_ratio=1, forward_type="v05"):
|
| 77 |
+
super().__init__()
|
| 78 |
+
assert in_channels == in_channels
|
| 79 |
+
self.wt_levels = wt_levels
|
| 80 |
+
self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels)
|
| 81 |
+
self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)
|
| 82 |
+
self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)
|
| 83 |
+
self.wt_function = partial(wavelet_transform, filters=self.wt_filter)
|
| 84 |
+
self.iwt_function = partial(inverse_wavelet_transform, filters=self.iwt_filter)
|
| 85 |
+
self.global_atten = SS2D(d_model=in_channels, d_state=1, ssm_ratio=ssm_ratio, initialize="v2",
|
| 86 |
+
forward_type=forward_type, channel_first=True, k_group=2)
|
| 87 |
+
self.base_scale = _ScaleModule([1, in_channels, 1, 1])
|
| 88 |
+
self.wavelet_convs = nn.ModuleList([
|
| 89 |
+
nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', groups=in_channels * 4)
|
| 90 |
+
for _ in range(wt_levels)
|
| 91 |
+
])
|
| 92 |
+
self.wavelet_scale = nn.ModuleList([
|
| 93 |
+
_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1)
|
| 94 |
+
for _ in range(wt_levels)
|
| 95 |
+
])
|
| 96 |
+
|
| 97 |
+
def forward(self, x):
|
| 98 |
+
x_ll_in_levels, x_h_in_levels, shapes_in_levels = [], [], []
|
| 99 |
+
curr_x_ll = x
|
| 100 |
+
for i in range(self.wt_levels):
|
| 101 |
+
curr_shape = curr_x_ll.shape
|
| 102 |
+
shapes_in_levels.append(curr_shape)
|
| 103 |
+
if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):
|
| 104 |
+
curr_x_ll = F.pad(curr_x_ll, (0, curr_shape[3] % 2, 0, curr_shape[2] % 2))
|
| 105 |
+
curr_x = self.wt_function(curr_x_ll)
|
| 106 |
+
curr_x_ll = curr_x[:, :, 0, :, :]
|
| 107 |
+
shape_x = curr_x.shape
|
| 108 |
+
curr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])
|
| 109 |
+
curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag)).reshape(shape_x)
|
| 110 |
+
x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])
|
| 111 |
+
x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])
|
| 112 |
+
next_x_ll = 0
|
| 113 |
+
for i in range(self.wt_levels - 1, -1, -1):
|
| 114 |
+
curr_x_ll = x_ll_in_levels.pop() + next_x_ll
|
| 115 |
+
curr_x = torch.cat([curr_x_ll.unsqueeze(2), x_h_in_levels.pop()], dim=2)
|
| 116 |
+
next_x_ll = self.iwt_function(curr_x)
|
| 117 |
+
next_x_ll = next_x_ll[:, :, :shapes_in_levels[i][2], :shapes_in_levels[i][3]]
|
| 118 |
+
x_tag = next_x_ll
|
| 119 |
+
x = self.base_scale(self.global_atten(x)) + x_tag
|
| 120 |
+
return x
|
| 121 |
+
|
| 122 |
+
class ChannelAttention(nn.Module):
|
| 123 |
+
def __init__(self, in_planes, ratio=16):
|
| 124 |
+
super(ChannelAttention, self).__init__()
|
| 125 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 126 |
+
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
| 127 |
+
|
| 128 |
+
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
|
| 129 |
+
self.relu1 = nn.ReLU()
|
| 130 |
+
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
|
| 131 |
+
self.sigmoid = nn.Sigmoid()
|
| 132 |
+
|
| 133 |
+
def forward(self, x):
|
| 134 |
+
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
|
| 135 |
+
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
|
| 136 |
+
out = avg_out + max_out
|
| 137 |
+
return self.sigmoid(out)
|
| 138 |
+
|
| 139 |
+
# 空间注意力模块
|
| 140 |
+
class SpatialAttention(nn.Module):
|
| 141 |
+
def __init__(self, kernel_size=7):
|
| 142 |
+
super(SpatialAttention, self).__init__()
|
| 143 |
+
|
| 144 |
+
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
|
| 145 |
+
padding = 3 if kernel_size == 7 else 1
|
| 146 |
+
|
| 147 |
+
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
| 148 |
+
self.sigmoid = nn.Sigmoid()
|
| 149 |
+
|
| 150 |
+
def forward(self, x):
|
| 151 |
+
avg_out = torch.mean(x, dim=1, keepdim=True)
|
| 152 |
+
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
| 153 |
+
x = torch.cat([avg_out, max_out], dim=1)
|
| 154 |
+
x = self.conv1(x)
|
| 155 |
+
return self.sigmoid(x)
|
| 156 |
+
|
| 157 |
+
# CBAM 注意力模块
|
| 158 |
+
class CBAM(nn.Module):
|
| 159 |
+
def __init__(self, in_planes):
|
| 160 |
+
super(CBAM, self).__init__()
|
| 161 |
+
self.ca = ChannelAttention(in_planes)
|
| 162 |
+
self.sa = SpatialAttention()
|
| 163 |
+
|
| 164 |
+
def forward(self, x):
|
| 165 |
+
x = self.ca(x) * x
|
| 166 |
+
x = self.sa(x) * x
|
| 167 |
+
return x
|
| 168 |
+
|
| 169 |
+
class DynamicConv2d(nn.Module):
|
| 170 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=False, num_experts=4):
|
| 171 |
+
super(DynamicConv2d, self).__init__()
|
| 172 |
+
self.in_channels = in_channels
|
| 173 |
+
self.out_channels = out_channels
|
| 174 |
+
self.kernel_size = kernel_size
|
| 175 |
+
self.stride = stride
|
| 176 |
+
self.padding = padding
|
| 177 |
+
self.groups = groups
|
| 178 |
+
self.bias = bias
|
| 179 |
+
self.num_experts = num_experts
|
| 180 |
+
|
| 181 |
+
self.experts = nn.ModuleList([
|
| 182 |
+
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, bias=bias)
|
| 183 |
+
for _ in range(num_experts)
|
| 184 |
+
])
|
| 185 |
+
self.gating = nn.Sequential(
|
| 186 |
+
nn.AdaptiveAvgPool2d(1),
|
| 187 |
+
nn.Conv2d(in_channels, num_experts, 1, bias=False),
|
| 188 |
+
nn.Softmax(dim=1)
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
def forward(self, x):
|
| 192 |
+
gates = self.gating(x)
|
| 193 |
+
gates = gates.view(x.size(0), self.num_experts, 1, 1, 1)
|
| 194 |
+
outputs = []
|
| 195 |
+
for i, expert in enumerate(self.experts):
|
| 196 |
+
outputs.append(expert(x).unsqueeze(1))
|
| 197 |
+
outputs = torch.cat(outputs, dim=1)
|
| 198 |
+
out = (gates * outputs).sum(dim=1)
|
| 199 |
+
return out
|
| 200 |
+
|
| 201 |
+
class DWConv2d_BN_ReLU(nn.Sequential):
|
| 202 |
+
def __init__(self, in_channels, out_channels, kernel_size=3):
|
| 203 |
+
super().__init__()
|
| 204 |
+
self.add_module('dwconv3x3', DynamicConv2d(in_channels, in_channels, kernel_size=kernel_size,
|
| 205 |
+
stride=1, padding=kernel_size // 2, groups=in_channels, bias=False))
|
| 206 |
+
self.add_module('bn1', nn.BatchNorm2d(in_channels))
|
| 207 |
+
self.add_module('relu', Mish())
|
| 208 |
+
self.add_module('dwconv1x1', nn.Conv2d(in_channels, out_channels, kernel_size=1,
|
| 209 |
+
stride=1, padding=0, groups=in_channels, bias=False))
|
| 210 |
+
self.add_module('bn2', nn.BatchNorm2d(out_channels))
|
| 211 |
+
|
| 212 |
+
class Conv2d_BN(nn.Sequential):
|
| 213 |
+
def __init__(self, a, b, ks=1, stride=1, pad=0, groups=1):
|
| 214 |
+
super().__init__()
|
| 215 |
+
self.add_module('c', nn.Conv2d(a, b, ks, stride, pad, groups=groups, bias=False))
|
| 216 |
+
self.add_module('bn', nn.BatchNorm2d(b))
|
| 217 |
+
|
| 218 |
+
class FFN(nn.Module):
|
| 219 |
+
def __init__(self, ed, h):
|
| 220 |
+
super().__init__()
|
| 221 |
+
self.pw1 = Conv2d_BN(ed, h)
|
| 222 |
+
self.act = Mish()
|
| 223 |
+
self.pw2 = Conv2d_BN(h, ed)
|
| 224 |
+
|
| 225 |
+
def forward(self, x):
|
| 226 |
+
return self.pw2(self.act(self.pw1(x)))
|
| 227 |
+
|
| 228 |
+
class StochasticDepth(nn.Module):
|
| 229 |
+
def __init__(self, survival_prob=0.8):
|
| 230 |
+
super().__init__()
|
| 231 |
+
self.survival_prob = survival_prob
|
| 232 |
+
|
| 233 |
+
def forward(self, x):
|
| 234 |
+
if not self.training:
|
| 235 |
+
return x
|
| 236 |
+
batch_size = x.shape[0]
|
| 237 |
+
random_tensor = self.survival_prob + torch.rand([batch_size, 1, 1, 1], dtype=x.dtype, device=x.device)
|
| 238 |
+
binary_tensor = torch.floor(random_tensor)
|
| 239 |
+
return x * binary_tensor / self.survival_prob
|
| 240 |
+
|
| 241 |
+
class Residual(nn.Module):
|
| 242 |
+
def __init__(self, m, survival_prob=0.8):
|
| 243 |
+
super().__init__()
|
| 244 |
+
self.m = m
|
| 245 |
+
self.stochastic_depth = StochasticDepth(survival_prob)
|
| 246 |
+
|
| 247 |
+
def forward(self, x):
|
| 248 |
+
return x + self.stochastic_depth(self.m(x))
|
| 249 |
+
|
| 250 |
+
class GLP_block(nn.Module):
|
| 251 |
+
def __init__(self, dim, global_ratio=0.25, local_ratio=0.25,pa_ratio = 0.1, kernels=3, ssm_ratio=1, forward_type="v052d"):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.dim = dim
|
| 254 |
+
self.global_channels = int(global_ratio * dim)
|
| 255 |
+
self.local_channels = int(local_ratio * dim)
|
| 256 |
+
self.pa_channels = int(pa_ratio * dim)
|
| 257 |
+
self.identity_channels = dim - self.global_channels - self.local_channels - self.pa_channels
|
| 258 |
+
self.local_op = nn.ModuleList([
|
| 259 |
+
DWConv2d_BN_ReLU(self.local_channels, self.local_channels, k)
|
| 260 |
+
for k in [3, 5, 7]
|
| 261 |
+
]) if self.local_channels > 0 else nn.Identity()
|
| 262 |
+
self.global_op = MBWTConv2d(self.global_channels, kernel_size=kernels,
|
| 263 |
+
ssm_ratio=ssm_ratio, forward_type=forward_type) \
|
| 264 |
+
if self.global_channels > 0 else nn.Identity()
|
| 265 |
+
self.cbam = CBAM(dim)
|
| 266 |
+
self.proj = nn.Sequential(
|
| 267 |
+
Mish(),
|
| 268 |
+
Conv2d_BN(dim, dim),
|
| 269 |
+
CBAM(dim)
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
self.pa_op = PA(self.pa_channels, norm_layer=nn.BatchNorm2d, act_layer=nn.GELU) \
|
| 273 |
+
if self.pa_channels > 0 else nn.Identity()
|
| 274 |
+
|
| 275 |
+
def forward(self, x):
|
| 276 |
+
x1, x2, x3, x4 = torch.split(x, [self.global_channels, self.local_channels, self.identity_channels, self.pa_channels], dim=1)
|
| 277 |
+
if isinstance(self.local_op, nn.ModuleList):
|
| 278 |
+
local_features = [op(x2) for op in self.local_op]
|
| 279 |
+
local_features = torch.cat(local_features, dim=1)
|
| 280 |
+
local_features = torch.mean(local_features, dim=1, keepdim=True)
|
| 281 |
+
local_features = local_features.expand(-1, self.local_channels, -1, -1)
|
| 282 |
+
else:
|
| 283 |
+
local_features = self.local_op(x2)
|
| 284 |
+
out = torch.cat([self.global_op(x1), local_features, x3, self.pa_op(x4)], dim=1)
|
| 285 |
+
return self.proj(out)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
class SASF(nn.Module):
|
| 292 |
+
def __init__(self, dim, global_ratio=0.25, local_ratio=0.25,pa_ratio = 0.1, kernels=3, ssm_ratio=1, forward_type="v052d"):
|
| 293 |
+
super().__init__()
|
| 294 |
+
self.dim = dim
|
| 295 |
+
self.global_channels = int(global_ratio * dim)
|
| 296 |
+
self.local_channels = int(local_ratio * dim)
|
| 297 |
+
self.pa_channels = int(pa_ratio * dim)
|
| 298 |
+
self.identity_channels = dim - self.global_channels - self.local_channels - self.pa_channels
|
| 299 |
+
self.local_op = nn.ModuleList([
|
| 300 |
+
DWConv2d_BN_ReLU(self.local_channels, self.local_channels, k)
|
| 301 |
+
for k in [3, 5, 7]
|
| 302 |
+
]) if self.local_channels > 0 else nn.Identity()
|
| 303 |
+
self.global_op = MBWTConv2d(self.global_channels, kernel_size=kernels,
|
| 304 |
+
ssm_ratio=ssm_ratio, forward_type=forward_type) \
|
| 305 |
+
if self.global_channels > 0 else nn.Identity()
|
| 306 |
+
self.cbam = CBAM(dim)
|
| 307 |
+
self.proj = nn.Sequential(
|
| 308 |
+
Mish(),
|
| 309 |
+
Conv2d_BN(dim, dim),
|
| 310 |
+
CBAM(dim)
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
self.pa_op = PA(self.pa_channels, norm_layer=nn.BatchNorm2d, act_layer=nn.GELU) \
|
| 314 |
+
if self.pa_channels > 0 else nn.Identity()
|
| 315 |
+
|
| 316 |
+
def forward(self, x):
|
| 317 |
+
x1, x2, x3, x4 = torch.split(x, [self.global_channels, self.local_channels, self.identity_channels, self.pa_channels], dim=1)
|
| 318 |
+
if isinstance(self.local_op, nn.ModuleList):
|
| 319 |
+
local_features = [op(x2) for op in self.local_op]
|
| 320 |
+
local_features = torch.cat(local_features, dim=1)
|
| 321 |
+
local_features = torch.mean(local_features, dim=1, keepdim=True)
|
| 322 |
+
local_features = local_features.expand(-1, self.local_channels, -1, -1)
|
| 323 |
+
else:
|
| 324 |
+
local_features = self.local_op(x2)
|
| 325 |
+
out = torch.cat([self.global_op(x1), local_features, x3, self.pa_op(x4)], dim=1)
|
| 326 |
+
return self.proj(out)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
class ViLLayer(nn.Module):
|
| 330 |
+
def __init__(self, dim, d_state = 16, d_conv = 4, expand = 2):
|
| 331 |
+
super().__init__()
|
| 332 |
+
self.dim = dim
|
| 333 |
+
self.norm = nn.LayerNorm(dim)
|
| 334 |
+
self.vil = ViLBlock(
|
| 335 |
+
dim= self.dim,
|
| 336 |
+
direction=SequenceTraversal.ROWWISE_FROM_TOP_LEFT
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
@autocast(enabled=False)
|
| 340 |
+
def forward(self, x):
|
| 341 |
+
if x.dtype == torch.float16:
|
| 342 |
+
x = x.type(torch.float32)
|
| 343 |
+
B, C = x.shape[:2]
|
| 344 |
+
assert C == self.dim
|
| 345 |
+
n_tokens = x.shape[2:].numel()
|
| 346 |
+
img_dims = x.shape[2:]
|
| 347 |
+
x_flat = x.reshape(B, C, n_tokens).transpose(-1, -2)
|
| 348 |
+
x_vil = self.vil(x_flat)
|
| 349 |
+
out = x_vil.transpose(-1, -2).reshape(B, C, *img_dims)
|
| 350 |
+
|
| 351 |
+
return out
|
| 352 |
+
|
| 353 |
+
def dsconv_3x3(in_channel, out_channel):
|
| 354 |
+
return nn.Sequential(
|
| 355 |
+
nn.Conv2d(in_channel, in_channel, kernel_size=3, stride=1, padding=1, groups=in_channel),
|
| 356 |
+
nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, padding=0, groups=1),
|
| 357 |
+
nn.BatchNorm2d(out_channel),
|
| 358 |
+
nn.ReLU(inplace=True)
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
def conv_1x1(in_channel, out_channel):
|
| 362 |
+
return nn.Sequential(
|
| 363 |
+
nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, padding=0, bias=False),
|
| 364 |
+
nn.BatchNorm2d(out_channel),
|
| 365 |
+
nn.ReLU(inplace=True)
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
class SqueezeAxialPositionalEmbedding(nn.Module):
|
| 369 |
+
def __init__(self, dim, shape):
|
| 370 |
+
super().__init__()
|
| 371 |
+
|
| 372 |
+
self.pos_embed = nn.Parameter(torch.randn([1, dim, shape]))
|
| 373 |
+
|
| 374 |
+
def forward(self, x):
|
| 375 |
+
B, C, N = x.shape
|
| 376 |
+
x = x + F.interpolate(self.pos_embed, size=(N), mode='linear', align_corners=False)
|
| 377 |
+
|
| 378 |
+
return x
|
| 379 |
+
|
| 380 |
+
class SEBlock(nn.Module):
|
| 381 |
+
def __init__(self, channels, r=16):
|
| 382 |
+
super().__init__()
|
| 383 |
+
self.fc = nn.Sequential(
|
| 384 |
+
nn.AdaptiveAvgPool2d(1),
|
| 385 |
+
nn.Conv2d(channels, channels//r, 1),
|
| 386 |
+
nn.ReLU(inplace=True),
|
| 387 |
+
nn.Conv2d(channels//r, channels, 1),
|
| 388 |
+
nn.Sigmoid()
|
| 389 |
+
)
|
| 390 |
+
def forward(self, x):
|
| 391 |
+
w = self.fc(x) # (B, C, 1, 1)
|
| 392 |
+
return x * w
|
| 393 |
+
class CTTF1(nn.Module):
|
| 394 |
+
def __init__(self, in_channel, out_channel,global_ratio=0.2, local_ratio=0.2, pa_ratio = 0.2 ,kernels=5, ssm_ratio=2.0, forward_type="v052d"):
|
| 395 |
+
super().__init__()
|
| 396 |
+
self.catconvA = dsconv_3x3(in_channel * 2, in_channel)
|
| 397 |
+
self.catconvB = dsconv_3x3(in_channel * 2, in_channel)
|
| 398 |
+
self.catconv = dsconv_3x3(in_channel * 2, out_channel)
|
| 399 |
+
self.convA = nn.Conv2d(in_channel, 1, 1)
|
| 400 |
+
self.convB = nn.Conv2d(in_channel, 1, 1)
|
| 401 |
+
self.sigmoid = nn.Sigmoid()
|
| 402 |
+
|
| 403 |
+
self.mixer = Residual(GLP_block(in_channel, global_ratio, local_ratio,pa_ratio, kernels, ssm_ratio, forward_type))
|
| 404 |
+
self.mixer2 = Residual(
|
| 405 |
+
SASF(in_channel, global_ratio = 0, local_ratio = 0.1, pa_ratio = 0, kernels = 5, ssm_ratio = 1, forward_type = "v052d"))
|
| 406 |
+
|
| 407 |
+
self.fuse = nn.Sequential(
|
| 408 |
+
nn.Conv2d(in_channel * 3, in_channel, kernel_size=1),
|
| 409 |
+
nn.ReLU(inplace=True)
|
| 410 |
+
)
|
| 411 |
+
self.cbam = CBAM(in_channel * 3)
|
| 412 |
+
|
| 413 |
+
self.act = nn.SiLU()
|
| 414 |
+
def forward(self, xA, xB):
|
| 415 |
+
x_diffA = self.mixer(xA)
|
| 416 |
+
x_diffB = self.mixer(xB)
|
| 417 |
+
|
| 418 |
+
f1 = x_diffA
|
| 419 |
+
f2 = x_diffB
|
| 420 |
+
diff_signed = f1 - f2
|
| 421 |
+
diff_abs = torch.abs(diff_signed)
|
| 422 |
+
sum_feat = f1 + f2
|
| 423 |
+
|
| 424 |
+
diff_signed = self.mixer2(diff_signed)
|
| 425 |
+
diff_abs = self.mixer2(diff_abs)
|
| 426 |
+
sum_feat = self.mixer2(sum_feat)
|
| 427 |
+
# 将多路特征在通道维度拼接
|
| 428 |
+
f_fuse = torch.cat([diff_signed, diff_abs, sum_feat], dim=1) # (B, 4C, H, W)
|
| 429 |
+
# 再接一个 1x1 卷积降维或提炼信息
|
| 430 |
+
f_fuse = self.cbam(f_fuse)
|
| 431 |
+
x_diff = self.fuse(f_fuse)
|
| 432 |
+
|
| 433 |
+
return x_diff
|
| 434 |
+
|
| 435 |
+
class CTTF2(nn.Module):
|
| 436 |
+
def __init__(self, in_channel, out_channel, global_ratio=0.25, local_ratio=0.25, pa_ratio=0, kernels=7,
|
| 437 |
+
ssm_ratio=2.0, forward_type="v052d"):
|
| 438 |
+
super().__init__()
|
| 439 |
+
self.catconvA = dsconv_3x3(in_channel * 2, in_channel)
|
| 440 |
+
self.catconvB = dsconv_3x3(in_channel * 2, in_channel)
|
| 441 |
+
self.catconv = dsconv_3x3(in_channel * 2, out_channel)
|
| 442 |
+
self.convA = nn.Conv2d(in_channel, 1, 1)
|
| 443 |
+
self.convB = nn.Conv2d(in_channel, 1, 1)
|
| 444 |
+
self.sigmoid = nn.Sigmoid()
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
self.mixer = Residual(
|
| 448 |
+
GLP_block(in_channel, global_ratio, local_ratio, pa_ratio, kernels, ssm_ratio, forward_type))
|
| 449 |
+
self.mixer2 = Residual(
|
| 450 |
+
SASF(in_channel, global_ratio=0, local_ratio=0.1, pa_ratio=0, kernels=5, ssm_ratio=1,
|
| 451 |
+
forward_type="v052d"))
|
| 452 |
+
|
| 453 |
+
self.fuse = nn.Sequential(
|
| 454 |
+
nn.Conv2d(in_channel * 3, in_channel, kernel_size=1),
|
| 455 |
+
nn.ReLU(inplace=True)
|
| 456 |
+
)
|
| 457 |
+
self.cbam = CBAM(in_channel * 3)
|
| 458 |
+
|
| 459 |
+
self.act = nn.SiLU()
|
| 460 |
+
|
| 461 |
+
def forward(self, xA, xB):
|
| 462 |
+
x_diffA = self.mixer(xA)
|
| 463 |
+
x_diffB = self.mixer(xB)
|
| 464 |
+
|
| 465 |
+
f1 = x_diffA
|
| 466 |
+
f2 = x_diffB
|
| 467 |
+
diff_signed = f1 - f2
|
| 468 |
+
diff_abs = torch.abs(diff_signed)
|
| 469 |
+
sum_feat = f1 + f2
|
| 470 |
+
|
| 471 |
+
diff_signed = self.mixer2(diff_signed)
|
| 472 |
+
diff_abs = self.mixer2(diff_abs)
|
| 473 |
+
sum_feat = self.mixer2(sum_feat)
|
| 474 |
+
f_fuse = torch.cat([diff_signed, diff_abs, sum_feat], dim=1) # (B, 4C, H, W)
|
| 475 |
+
f_fuse = self.cbam(f_fuse)
|
| 476 |
+
x_diff = self.fuse(f_fuse)
|
| 477 |
+
|
| 478 |
+
return x_diff
|
| 479 |
+
|
| 480 |
+
class Mlp(nn.Module):
|
| 481 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,channels_first=True):
|
| 482 |
+
super().__init__()
|
| 483 |
+
out_features = out_features or in_features
|
| 484 |
+
hidden_features = hidden_features or in_features
|
| 485 |
+
|
| 486 |
+
Linear = partial(nn.Conv2d, kernel_size=1, padding=0) if channels_first else nn.Linear
|
| 487 |
+
self.fc1 = Linear(in_features, hidden_features)
|
| 488 |
+
self.act = act_layer()
|
| 489 |
+
self.fc2 = Linear(hidden_features, out_features)
|
| 490 |
+
self.drop = nn.Dropout(drop)
|
| 491 |
+
|
| 492 |
+
def forward(self, x):
|
| 493 |
+
x = self.fc1(x)
|
| 494 |
+
x = self.act(x)
|
| 495 |
+
x = self.drop(x)
|
| 496 |
+
x = self.fc2(x)
|
| 497 |
+
x = self.drop(x)
|
| 498 |
+
return x
|
| 499 |
+
|
| 500 |
+
class LHBlock(nn.Module):
|
| 501 |
+
def __init__(self, channels_l, channels_h):
|
| 502 |
+
super().__init__()
|
| 503 |
+
self.channels_l = channels_l
|
| 504 |
+
self.channels_h = channels_h
|
| 505 |
+
self.cross_size = 12
|
| 506 |
+
self.cross_kv = nn.Sequential(
|
| 507 |
+
nn.BatchNorm2d(channels_l),
|
| 508 |
+
nn.AdaptiveMaxPool2d(output_size=(self.cross_size, self.cross_size)),
|
| 509 |
+
nn.Conv2d(channels_l, 2 * channels_h, 1, 1, 0)
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
self.conv = conv_1x1(channels_l, channels_h)
|
| 513 |
+
self.norm = nn.BatchNorm2d(channels_h)
|
| 514 |
+
|
| 515 |
+
self.mlp_l = Mlp(in_features=channels_l, out_features=channels_l)
|
| 516 |
+
self.mlp_h = Mlp(in_features=channels_h, out_features=channels_h)
|
| 517 |
+
|
| 518 |
+
def _act_sn(self, x):
|
| 519 |
+
_, _, H, W = x.shape
|
| 520 |
+
inner_channel = self.cross_size * self.cross_size
|
| 521 |
+
x = x.reshape([-1, inner_channel, H, W]) * (inner_channel**-0.5)
|
| 522 |
+
x = F.softmax(x, dim=1)
|
| 523 |
+
x = x.reshape([1, -1, H, W])
|
| 524 |
+
return x
|
| 525 |
+
|
| 526 |
+
def attn_h(self, x_h, cross_k, cross_v):
|
| 527 |
+
B, _, H, W = x_h.shape
|
| 528 |
+
x_h = self.norm(x_h)
|
| 529 |
+
x_h = x_h.reshape([1, -1, H, W]) # n,c_in,h,w -> 1,n*c_in,h,w
|
| 530 |
+
x_h = F.conv2d(x_h, cross_k, bias=None, stride=1, padding=0,
|
| 531 |
+
groups=B) # 1,n*c_in,h,w -> 1,n*144,h,w (group=B)
|
| 532 |
+
x_h = self._act_sn(x_h)
|
| 533 |
+
x_h = F.conv2d(x_h, cross_v, bias=None, stride=1, padding=0,
|
| 534 |
+
groups=B) # 1,n*144,h,w -> 1, n*c_in,h,w (group=B)
|
| 535 |
+
x_h = x_h.reshape([-1, self.channels_h, H,
|
| 536 |
+
W]) # 1, n*c_in,h,w -> n,c_in,h,w (c_in = c_out)
|
| 537 |
+
|
| 538 |
+
return x_h
|
| 539 |
+
|
| 540 |
+
def forward(self, x_l, x_h):
|
| 541 |
+
x_l = x_l + self.mlp_l(x_l)
|
| 542 |
+
x_l_conv = self.conv(x_l)
|
| 543 |
+
x_h = x_h + F.interpolate(x_l_conv, size=x_h.shape[2:], mode='bilinear')
|
| 544 |
+
|
| 545 |
+
cross_kv = self.cross_kv(x_l)
|
| 546 |
+
cross_k, cross_v = cross_kv.split(self.channels_h, 1)
|
| 547 |
+
cross_k = cross_k.permute(0, 2, 3, 1).reshape([-1, self.channels_h, 1, 1]) # n*144,channels_h,1,1
|
| 548 |
+
cross_v = cross_v.reshape([-1, self.cross_size * self.cross_size, 1, 1]) # n*channels_h,144,1,1
|
| 549 |
+
|
| 550 |
+
x_h = x_h + self.attn_h(x_h, cross_k, cross_v) # [4, 40, 128, 128]
|
| 551 |
+
x_h = x_h + self.mlp_h(x_h)
|
| 552 |
+
|
| 553 |
+
return x_h
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
class CTTF(nn.Module):
|
| 557 |
+
def __init__(self, channels=[40, 80, 192, 384]):
|
| 558 |
+
super().__init__()
|
| 559 |
+
self.channels = channels
|
| 560 |
+
self.fusion0 = CTTF1(channels[0], channels[0])
|
| 561 |
+
self.fusion1 = CTTF1(channels[1], channels[1])
|
| 562 |
+
self.fusion2 = CTTF2(channels[2], channels[2])
|
| 563 |
+
self.fusion3 = CTTF2(channels[3], channels[3])
|
| 564 |
+
|
| 565 |
+
self.LHBlock1 = LHBlock(channels[1], channels[0])
|
| 566 |
+
self.LHBlock2 = LHBlock(channels[2], channels[0])
|
| 567 |
+
self.LHBlock3 = LHBlock(channels[3], channels[0])
|
| 568 |
+
|
| 569 |
+
self.mlp1 = Mlp(in_features=channels[0], out_features=channels[0])
|
| 570 |
+
self.mlp2 = Mlp(in_features=channels[0], out_features=2)
|
| 571 |
+
self.dwc = dsconv_3x3(channels[0], channels[0])
|
| 572 |
+
|
| 573 |
+
def forward(self, inputs):
|
| 574 |
+
featuresA, featuresB = inputs
|
| 575 |
+
# fA_0, fA_1, fA_2, fA_3 = featuresA
|
| 576 |
+
# fB_0, fB_1, fB_2, fB_3 = featuresB
|
| 577 |
+
x_diff_0 = self.fusion0(featuresA[0], featuresB[0]) # [4, 40, 128, 128]
|
| 578 |
+
x_diff_1 = self.fusion1(featuresA[1], featuresB[1]) # [4, 80, 64, 64]
|
| 579 |
+
# x_diff_2 = featuresA[2] - featuresB[2]
|
| 580 |
+
# x_diff_3 = featuresA[3] - featuresB[3]
|
| 581 |
+
x_diff_2 = self.fusion2(featuresA[2], featuresB[2]) # [4, 192, 32, 32]
|
| 582 |
+
x_diff_3 = self.fusion3(featuresA[3], featuresB[3]) # [4, 384, 16, 16]
|
| 583 |
+
|
| 584 |
+
x_h = x_diff_0
|
| 585 |
+
x_h = self.LHBlock1(x_diff_1, x_h) # [4, 40, 128, 128]
|
| 586 |
+
x_h = self.LHBlock2(x_diff_2, x_h)
|
| 587 |
+
x_h = self.LHBlock3(x_diff_3, x_h)
|
| 588 |
+
|
| 589 |
+
out = self.mlp2(self.dwc(x_h) + self.mlp1(x_h))
|
| 590 |
+
|
| 591 |
+
out = F.interpolate(
|
| 592 |
+
out,
|
| 593 |
+
scale_factor=(4, 4),
|
| 594 |
+
mode="bilinear",
|
| 595 |
+
align_corners=False,
|
| 596 |
+
)
|
| 597 |
+
return out
|
| 598 |
+
|