InPeerReview's picture
Upload 161 files
226675b verified
# This file is licensed under AGPL-3.0
# Copyright (c) NXAI GmbH and its affiliates 2024
# Benedikt Alkin, Maximilian Beck, Korbinian Pöppel
import math
from enum import Enum
import einops
import torch
import torch.nn.functional as F
from torch import nn
# from vision_lstm_util import interpolate_sincos, to_ntuple, VitPatchEmbed, VitPosEmbed2d, DropPath
from rscd.models.decoderheads.vision_lstm_util import interpolate_sincos, to_ntuple, VitPatchEmbed, VitPosEmbed2d, DropPath
class SequenceTraversal(Enum):
ROWWISE_FROM_TOP_LEFT = "rowwise_from_top_left"
ROWWISE_FROM_BOT_RIGHT = "rowwise_from_bot_right"
def bias_linspace_init_(param: torch.Tensor, start: float = 3.4, end: float = 6.0) -> torch.Tensor:
"""Linearly spaced bias init across dimensions."""
assert param.dim() == 1, f"param must be 1-dimensional (typically a bias), got {param.dim()}"
n_dims = param.shape[0]
init_vals = torch.linspace(start, end, n_dims)
with torch.no_grad():
param.copy_(init_vals)
return param
def small_init_(param: torch.Tensor, dim: int) -> torch.Tensor:
"""
Fills the input Tensor with values according to the method described in Transformers without Tears: Improving
the Normalization of Self-Attention - Nguyen, T. & Salazar, J. (2019), using a normal distribution.
Adopted from https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/init_functions.py.
"""
std = math.sqrt(2 / (5 * dim))
torch.nn.init.normal_(param, mean=0.0, std=std)
return param
def wang_init_(param: torch.Tensor, dim: int, num_blocks: int):
""" Adopted from https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/init_functions.py. """
std = 2 / num_blocks / math.sqrt(dim)
torch.nn.init.normal_(param, mean=0.0, std=std)
return param
def parallel_stabilized_simple(
queries: torch.Tensor,
keys: torch.Tensor,
values: torch.Tensor,
igate_preact: torch.Tensor,
fgate_preact: torch.Tensor,
lower_triangular_matrix: torch.Tensor = None,
stabilize_rowwise: bool = True,
eps: float = 1e-6,
) -> torch.Tensor:
"""
This is the mLSTM cell in parallel form.
This version is stabilized. We control the range of exp() arguments by
ensuring that they are always smaller than 0.0 by subtracting the maximum.
Args:
:param queries: (torch.Tensor) (B, NH, S, DH)
:param keys: (torch.Tensor) (B, NH, S, DH)
:param values: (torch.Tensor) (B, NH, S, DH)
:param igate_preact: (torch.Tensor) (B, NH, S, 1)
:param fgate_preact: (torch.Tensor) (B, NH, S, 1)
:param lower_triangular_matrix: (torch.Tensor) (S,S). Defaults to None.
:param stabilize_rowwise: (bool) Wether to stabilize the combination matrix C rowwise (take maximum per row).
Alternative: Subtract the maximum over all rows. Defaults to True.
:param eps: (float) small constant to avoid division by 0. Defaults to 1e-6.
Returns:
torch.Tensor: (B, NH, S, DH), h_tilde_state
"""
B, NH, S, DH = queries.shape
_dtype, _device = queries.dtype, queries.device
# forget gate matrix
log_fgates = torch.nn.functional.logsigmoid(fgate_preact) # (B, NH, S, 1)
if lower_triangular_matrix is None or S < lower_triangular_matrix.size(-1):
ltr = torch.tril(torch.ones((S, S), dtype=torch.bool, device=_device))
else:
ltr = lower_triangular_matrix
assert ltr.dtype == torch.bool, f"lower_triangular_matrix must be of dtype bool, got {ltr.dtype}"
log_fgates_cumsum = torch.cat(
[
torch.zeros((B, NH, 1, 1), dtype=_dtype, device=_device),
torch.cumsum(log_fgates, dim=-2),
],
dim=-2,
) # (B, NH, S+1, 1)
# for each batch/head this is a matrix of shape (S+1, S+1) containing the cumsum of the log forget gate values
# in the second dimension (colum dimension). Each row has the same is a copy of the first row.
# First entry of each row is zero.
rep_log_fgates_cumsum = log_fgates_cumsum.repeat(1, 1, 1, S + 1) # (B, NH, S+1, S+1)
# Now in each row cut off / subtract the forgetgate values of the later timesteps
# where col j > row i
_log_fg_matrix = rep_log_fgates_cumsum - rep_log_fgates_cumsum.transpose(-2, -1) # (B, NH, S+1, S+1)
# Causal masking & selection of the correct submatrix, such that forgetgate at timestep t is not applied
# to the input at timestep t
log_fg_matrix = torch.where(ltr, _log_fg_matrix[:, :, 1:, 1:], -float("inf")) # (B, NH, S, S)
# gate decay matrix D (combination of forget gate and input gate)
log_D_matrix = log_fg_matrix + igate_preact.transpose(-2, -1) # (B, NH, S, S)
# D matrix stabilization
if stabilize_rowwise:
max_log_D, _ = torch.max(log_D_matrix, dim=-1, keepdim=True) # (B, NH, S, 1)
else:
max_log_D = torch.max(log_D_matrix.view(B, NH, -1), dim=-1, keepdim=True)[0].unsqueeze(-1)
# (B, NH, 1, 1)
log_D_matrix_stabilized = log_D_matrix - max_log_D # (B, NH, S, S)
D_matrix = torch.exp(log_D_matrix_stabilized) # (B, NH, S, S)
keys_scaled = keys / math.sqrt(DH)
# combination matrix C
qk_matrix = queries @ keys_scaled.transpose(-2, -1) # (B, NH, S, S)
C_matrix = qk_matrix * D_matrix # (B, NH, S, S)
normalizer = torch.maximum(C_matrix.sum(dim=-1, keepdim=True).abs(), torch.exp(-max_log_D)) # (B, NH, S, 1)
# (B, NH, S, S)
C_matrix_normalized = C_matrix / (normalizer + eps)
# retrieved values
h_tilde_state = C_matrix_normalized @ values # (B, NH, S, DH)
return h_tilde_state
class LinearHeadwiseExpand(nn.Module):
"""
This is a structured projection layer that projects the input to a higher dimension.
It only allows integer up-projection factors, i.e. the output dimension is a multiple of the input dimension.
"""
def __init__(self, dim, num_heads, bias=False):
super().__init__()
assert dim % num_heads == 0
self.dim = dim
self.num_heads = num_heads
dim_per_head = dim // num_heads
self.weight = nn.Parameter(torch.empty(num_heads, dim_per_head, dim_per_head))
if bias:
self.bias = nn.Parameter(torch.empty(dim))
else:
self.bias = None
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weight.data, mean=0.0, std=math.sqrt(2 / 5 / self.weight.shape[-1]))
if self.bias is not None:
nn.init.zeros_(self.bias.data)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = einops.rearrange(x, "... (nh d) -> ... nh d", nh=self.num_heads)
x = einops.einsum(
x,
self.weight,
"... nh d, nh out_d d -> ... nh out_d",
)
x = einops.rearrange(x, "... nh out_d -> ... (nh out_d)")
if self.bias is not None:
x = x + self.bias
return x
def extra_repr(self):
return (
f"dim={self.dim}, "
f"num_heads={self.num_heads}, "
f"bias={self.bias is not None}, "
)
class CausalConv1d(nn.Module):
"""
Implements causal depthwise convolution of a time series tensor.
Input: Tensor of shape (B,T,F), i.e. (batch, time, feature)
Output: Tensor of shape (B,T,F)
Args:
feature_dim: number of features in the input tensor
kernel_size: size of the kernel for the depthwise convolution
causal_conv_bias: whether to use bias in the depthwise convolution
channel_mixing: whether to use channel mixing (i.e. groups=1) or not (i.e. groups=feature_dim)
If True, it mixes the convolved features across channels.
If False, all the features are convolved independently.
"""
def __init__(self, dim, kernel_size=4, bias=True):
super().__init__()
self.dim = dim
self.kernel_size = kernel_size
self.bias = bias
# padding of this size assures temporal causality.
self.pad = kernel_size - 1
self.conv = nn.Conv1d(
in_channels=dim,
out_channels=dim,
kernel_size=kernel_size,
padding=self.pad,
groups=dim,
bias=bias,
)
self.reset_parameters()
def reset_parameters(self):
self.conv.reset_parameters()
def forward(self, x: torch.Tensor) -> torch.Tensor:
# conv requires dim first
x = einops.rearrange(x, "b l d -> b d l")
# causal conv1d
x = self.conv(x)
x = x[:, :, :-self.pad]
# back to dim last
x = einops.rearrange(x, "b d l -> b l d")
return x
class LayerNorm(nn.Module):
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False. """
def __init__(
self,
ndim: int = -1,
weight: bool = True,
bias: bool = False,
eps: float = 1e-5,
residual_weight: bool = True,
):
super().__init__()
self.weight = nn.Parameter(torch.zeros(ndim)) if weight else None
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
self.eps = eps
self.residual_weight = residual_weight
self.ndim = ndim
self.reset_parameters()
@property
def weight_proxy(self) -> torch.Tensor:
if self.weight is None:
return None
if self.residual_weight:
return 1.0 + self.weight
else:
return self.weight
def forward(self, x: torch.Tensor) -> torch.Tensor:
return F.layer_norm(
x,
normalized_shape=(self.ndim,),
weight=self.weight_proxy,
bias=self.bias,
eps=self.eps,
)
def reset_parameters(self):
if self.weight_proxy is not None:
if self.residual_weight:
nn.init.zeros_(self.weight)
else:
nn.init.ones_(self.weight)
if self.bias is not None:
nn.init.zeros_(self.bias)
class MultiHeadLayerNorm(LayerNorm):
def forward(self, x: torch.Tensor) -> torch.Tensor:
assert x.ndim == 4, "Input must be 4D tensor (B, NH, S, DH)"
B, NH, S, DH = x.shape
gn_in_1 = x.transpose(1, 2) # (B, S, NH, DH)
gn_in_2 = gn_in_1.reshape(B * S, NH * DH) # (B * S, NH * DH)
out = F.group_norm(
gn_in_2,
num_groups=NH,
weight=self.weight_proxy,
bias=self.bias,
eps=self.eps,
) # .to(x.dtype)
# (B * S), (NH * DH) -> (B, S, NH, DH) -> (B, NH, S, DH)
out = out.view(B, S, NH, DH).transpose(1, 2)
return out
class MatrixLSTMCell(nn.Module):
def __init__(self, dim, num_heads):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.igate = nn.Linear(3 * dim, num_heads)
self.fgate = nn.Linear(3 * dim, num_heads)
self.outnorm = MultiHeadLayerNorm(ndim=dim, weight=True, bias=False)
self.causal_mask_cache = {}
self.reset_parameters()
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
B, S, _ = q.shape # (B, S, H)
if_gate_input = torch.cat([q, k, v], dim=-1)
q = q.view(B, S, self.num_heads, -1) # (B, S, NH, DH)
k = k.view(B, S, self.num_heads, -1) # (B, S, NH, DH)
v = v.view(B, S, self.num_heads, -1) # (B, S, NH, DH)
q = q.transpose(1, 2) # (B, NH, S, DH)
k = k.transpose(1, 2) # (B, NH, S, DH)
v = v.transpose(1, 2) # (B, NH, S, DH)
# compute input and forget gate pre-activations
igate_preact = self.igate(if_gate_input) # (B, S, NH)
igate_preact = igate_preact.transpose(-1, -2).unsqueeze(-1) # (B, NH, S, 1)
fgate_preact = self.fgate(if_gate_input) # (B, S, NH)
fgate_preact = fgate_preact.transpose(-1, -2).unsqueeze(-1) # (B, NH, S, 1)#
# cache causal mask to avoid memory allocation in every iteration
if S in self.causal_mask_cache:
causal_mask = self.causal_mask_cache[(S, str(q.device))]
else:
causal_mask = torch.tril(torch.ones(S, S, dtype=torch.bool, device=q.device))
self.causal_mask_cache[(S, str(q.device))] = causal_mask
h_state = parallel_stabilized_simple(
queries=q,
keys=k,
values=v,
igate_preact=igate_preact,
fgate_preact=fgate_preact,
lower_triangular_matrix=causal_mask,
) # (B, NH, S, DH)
h_state_norm = self.outnorm(h_state) # (B, NH, S, DH)
h_state_norm = h_state_norm.transpose(1, 2).reshape(B, S, -1) # (B, NH, S, DH) -> (B, S, NH, DH) -> (B, S, H)
return h_state_norm
def reset_parameters(self):
self.outnorm.reset_parameters()
# forget gate initialization
torch.nn.init.zeros_(self.fgate.weight)
bias_linspace_init_(self.fgate.bias, start=3.0, end=6.0)
# input gate initialization
torch.nn.init.zeros_(self.igate.weight)
torch.nn.init.normal_(self.igate.bias, mean=0.0, std=0.1)
class ViLLayer(nn.Module):
def __init__(
self,
dim,
direction,
expansion=2,
qkv_block_size=4,
proj_bias=False,
conv_bias=True,
kernel_size=4,
):
super().__init__()
if dim % qkv_block_size != 0:
qkv_block_size=2
# assert dim % qkv_block_size == 0
self.dim = dim
self.direction = direction
self.expansion = expansion
self.qkv_block_size = qkv_block_size
self.proj_bias = proj_bias
self.conv_bias = conv_bias
self.kernel_size = kernel_size
inner_dim = expansion * dim
num_heads = inner_dim // qkv_block_size
self.proj_up = nn.Linear(
in_features=dim,
out_features=2 * inner_dim,
bias=proj_bias,
)
self.q_proj = LinearHeadwiseExpand(
dim=inner_dim,
num_heads=num_heads,
bias=proj_bias,
)
self.k_proj = LinearHeadwiseExpand(
dim=inner_dim,
num_heads=num_heads,
bias=proj_bias,
)
self.v_proj = LinearHeadwiseExpand(
dim=inner_dim,
num_heads=num_heads,
bias=proj_bias,
)
self.conv1d = CausalConv1d(
dim=inner_dim,
kernel_size=kernel_size,
bias=conv_bias,
)
self.mlstm_cell = MatrixLSTMCell(
dim=inner_dim,
num_heads=qkv_block_size,
)
self.learnable_skip = nn.Parameter(torch.ones(inner_dim))
self.proj_down = nn.Linear(
in_features=inner_dim,
out_features=dim,
bias=proj_bias,
)
self.reset_parameters()
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, S, _ = x.shape
# alternate direction in successive layers
if self.direction == SequenceTraversal.ROWWISE_FROM_TOP_LEFT:
pass
elif self.direction == SequenceTraversal.ROWWISE_FROM_BOT_RIGHT:
x = x.flip(dims=[1])
else:
raise NotImplementedError
# up-projection
x_inner = self.proj_up(x)
x_mlstm, z = torch.chunk(x_inner, chunks=2, dim=-1)
# mlstm branch
x_mlstm_conv = self.conv1d(x_mlstm)
x_mlstm_conv_act = F.silu(x_mlstm_conv)
q = self.q_proj(x_mlstm_conv_act)
k = self.k_proj(x_mlstm_conv_act)
v = self.v_proj(x_mlstm)
h_tilde_state = self.mlstm_cell(q=q, k=k, v=v)
h_tilde_state_skip = h_tilde_state + (self.learnable_skip * x_mlstm_conv_act)
# output / z branch
h_state = h_tilde_state_skip * F.silu(z)
# down-projection
x = self.proj_down(h_state)
# reverse alternating flip
if self.direction == SequenceTraversal.ROWWISE_FROM_TOP_LEFT:
pass
elif self.direction == SequenceTraversal.ROWWISE_FROM_BOT_RIGHT:
x = x.flip(dims=[1])
else:
raise NotImplementedError
return x
def reset_parameters(self):
# init inproj
small_init_(self.proj_up.weight, dim=self.dim)
if self.proj_up.bias is not None:
nn.init.zeros_(self.proj_up.bias)
# init outproj (original mLSTM uses num_blocks=1)
wang_init_(self.proj_down.weight, dim=self.dim, num_blocks=1)
if self.proj_down.bias is not None:
nn.init.zeros_(self.proj_down.bias)
nn.init.ones_(self.learnable_skip)
def _init_qkv_proj(qkv_proj: LinearHeadwiseExpand):
# use the embedding dim instead of the inner embedding dim
small_init_(qkv_proj.weight, dim=self.dim)
if qkv_proj.bias is not None:
nn.init.zeros_(qkv_proj.bias)
_init_qkv_proj(self.q_proj)
_init_qkv_proj(self.k_proj)
_init_qkv_proj(self.v_proj)
self.mlstm_cell.reset_parameters()
class ViLBlock(nn.Module):
def __init__(self, dim, direction, drop_path=0.0, norm_bias=False):
super().__init__()
self.dim = dim
self.direction = direction
self.drop_path = drop_path
self.norm_bias = norm_bias
self.drop_path = DropPath(drop_prob=drop_path)
self.norm = LayerNorm(ndim=dim, weight=True, bias=norm_bias)
self.layer = ViLLayer(dim=dim, direction=direction)
self.reset_parameters()
def _forward_path(self, x):
x = self.norm(x)
x = self.layer(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.drop_path(x, self._forward_path)
# print('In xlstm now')
return x
def reset_parameters(self):
self.layer.reset_parameters()
self.norm.reset_parameters()
class VisionLSTM(nn.Module):
def __init__(
self,
dim=192,
input_shape=(3, 224, 224),
patch_size=16,
depth=24,
output_shape=(1000,),
mode="classifier",
pooling="bilateral_avg",
drop_path_rate=0.0,
stride=None,
alternation="bidirectional",
drop_path_decay=False,
legacy_norm=False,
):
super().__init__()
self.input_shape = input_shape
self.output_shape = output_shape
ndim = len(self.input_shape) - 1
self.patch_size = to_ntuple(patch_size, n=ndim)
self.dim = dim
self.depth = depth
self.stride = stride
self.mode = mode
self.pooling = pooling
self.alternation = alternation
self.drop_path_rate = drop_path_rate
self.drop_path_decay = drop_path_decay
# initialize patch_embed
self.patch_embed = VitPatchEmbed(
dim=dim,
stride=stride,
num_channels=self.input_shape[0],
resolution=self.input_shape[1:],
patch_size=self.patch_size,
)
# pos embed
self.pos_embed = VitPosEmbed2d(seqlens=self.patch_embed.seqlens, dim=dim)
# calculate stochastic depth per block
if drop_path_decay and drop_path_rate > 0.:
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
else:
dpr = [drop_path_rate] * depth
# directions
directions = []
if alternation == "bidirectional":
for i in range(depth):
if i % 2 == 0:
directions.append(SequenceTraversal.ROWWISE_FROM_TOP_LEFT)
else:
directions.append(SequenceTraversal.ROWWISE_FROM_BOT_RIGHT)
else:
raise NotImplementedError(f"invalid alternation '{alternation}'")
# blocks
self.blocks = nn.ModuleList(
[
ViLBlock(
dim=dim,
drop_path=dpr[i],
direction=directions[i],
)
for i in range(depth)
]
)
# LEGACY: only norm after pooling is needed, norm after blocks is not needed but was used for training
if legacy_norm:
self.legacy_norm = LayerNorm(dim, bias=False)
else:
self.legacy_norm = nn.Identity()
self.norm = nn.LayerNorm(dim, eps=1e-6)
# head
if mode is None:
# no head -> use as feature extractor
assert self.output_shape is None
assert self.pooling is None
self.head = None
self.output_shape = (self.patch_embed.num_patches, dim)
elif mode == "classifier":
# linear classification head
assert self.output_shape is not None and len(self.output_shape) == 1, \
f"define number of classes via output_shape=(num_classes,) (e.g. output_shape=(1000,) for ImageNet-1K"
self.head = nn.Linear(dim, self.output_shape[0])
# following MAE https://github.com/facebookresearch/mae/blob/main/main_finetune.py#L257
nn.init.trunc_normal_(self.head.weight, std=2e-5)
nn.init.zeros_(self.head.bias)
else:
raise NotImplementedError
def load_state_dict(self, state_dict, strict=True):
# interpolate pos_embed for different resolution (e.g. for fine-tuning on higher-resolution)
old_pos_embed = state_dict["pos_embed.embed"]
if old_pos_embed.shape != self.pos_embed.embed.shape:
state_dict["pos_embed.embed"] = interpolate_sincos(embed=old_pos_embed, seqlens=self.pos_embed.seqlens)
return super().load_state_dict(state_dict=state_dict, strict=strict)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed.embed"}
def forward(self, x):
# embed patches
x = self.patch_embed(x)
# add pos_embed
x = self.pos_embed(x)
# flatten to 1d
x = einops.rearrange(x, "b ... d -> b (...) d")
# apply blocks
for block in self.blocks:
x = block(x)
x = self.legacy_norm(x)
# pool
if self.pooling is None:
x = self.norm(x)
elif self.pooling == "bilateral_avg":
# norm after pooling
x = (x[:, 0] + x[:, -1]) / 2
x = self.norm(x)
else:
raise NotImplementedError(f"pooling '{self.pooling}' is not implemented")
# head
if self.head is not None:
x = self.head(x)
return x