InPeerReview commited on
Commit
34ea8e9
·
verified ·
1 Parent(s): 1ffafdf

Upload main.py

Browse files
Files changed (1) hide show
  1. main.py +319 -0
main.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ from model.trainer import Trainer
4
+
5
+ sys.path.insert(0, '.')
6
+
7
+ import torch
8
+ import torch.nn.functional as F
9
+ import torch.backends.cudnn as cudnn
10
+ from torch.nn.parallel import gather
11
+ import torch.optim.lr_scheduler
12
+
13
+ import dataset.dataset as myDataLoader
14
+ import dataset.Transforms as myTransforms
15
+ from model.metric_tool import ConfuseMatrixMeter
16
+ from model.utils import BCEDiceLoss, init_seed, adjust_learning_rate
17
+
18
+ import os, time
19
+ import numpy as np
20
+ from argparse import ArgumentParser
21
+
22
+
23
+
24
+ @torch.no_grad()
25
+ def val(args, val_loader, model):
26
+ model.eval()
27
+
28
+ salEvalVal = ConfuseMatrixMeter(n_class=2)
29
+
30
+ epoch_loss = []
31
+
32
+ total_batches = len(val_loader)
33
+ print(len(val_loader))
34
+ for iter, batched_inputs in enumerate(val_loader):
35
+
36
+ img, target = batched_inputs
37
+ pre_img = img[:, 0:3]
38
+ post_img = img[:, 3:6]
39
+
40
+ start_time = time.time()
41
+
42
+ if args.onGPU == True:
43
+ pre_img = pre_img.cuda()
44
+ target = target.cuda()
45
+ post_img = post_img.cuda()
46
+
47
+ pre_img_var = torch.autograd.Variable(pre_img).float()
48
+ post_img_var = torch.autograd.Variable(post_img).float()
49
+ target_var = torch.autograd.Variable(target).float()
50
+
51
+ # run the mdoel
52
+ output = model(pre_img_var, post_img_var)
53
+ loss = BCEDiceLoss(output, target_var)
54
+
55
+ pred = torch.where(output > 0.5, torch.ones_like(output), torch.zeros_like(output)).long()
56
+
57
+ # torch.cuda.synchronize()
58
+ time_taken = time.time() - start_time
59
+
60
+ epoch_loss.append(loss.data.item())
61
+
62
+ # compute the confusion matrix
63
+ if args.onGPU and torch.cuda.device_count() > 1:
64
+ output = gather(pred, 0, dim=0)
65
+ # salEvalVal.addBatch(pred, target_var)
66
+ f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target_var.cpu().numpy())
67
+ if iter % 5 == 0:
68
+ print('\r[%d/%d] F1: %3f loss: %.3f time: %.3f' % (iter, total_batches, f1, loss.data.item(), time_taken),
69
+ end='')
70
+
71
+ average_epoch_loss_val = sum(epoch_loss) / len(epoch_loss)
72
+ scores = salEvalVal.get_scores()
73
+
74
+ return average_epoch_loss_val, scores
75
+
76
+
77
+ def train(args, train_loader, model, optimizer, epoch, max_batches, cur_iter=0, lr_factor=1.):
78
+ # switch to train mode
79
+ model.train()
80
+
81
+ salEvalVal = ConfuseMatrixMeter(n_class=2)
82
+ epoch_loss = []
83
+
84
+ for iter, batched_inputs in enumerate(train_loader):
85
+
86
+ img, target = batched_inputs
87
+ pre_img = img[:, 0:3]
88
+ post_img = img[:, 3:6]
89
+
90
+ start_time = time.time()
91
+
92
+ # adjust the learning rate
93
+ lr = adjust_learning_rate(args, optimizer, epoch, iter + cur_iter, max_batches, lr_factor=lr_factor)
94
+
95
+ if args.onGPU == True:
96
+ pre_img = pre_img.cuda()
97
+ target = target.cuda()
98
+ post_img = post_img.cuda()
99
+
100
+ pre_img_var = torch.autograd.Variable(pre_img).float()
101
+ post_img_var = torch.autograd.Variable(post_img).float()
102
+ target_var = torch.autograd.Variable(target).float()
103
+
104
+ # run the model
105
+ output = model(pre_img_var, post_img_var)
106
+ loss = BCEDiceLoss(output, target_var)
107
+
108
+ pred = torch.where(output > 0.5, torch.ones_like(output), torch.zeros_like(output)).long()
109
+
110
+ optimizer.zero_grad()
111
+ loss.backward()
112
+ optimizer.step()
113
+
114
+ epoch_loss.append(loss.data.item())
115
+ time_taken = time.time() - start_time
116
+ res_time = (max_batches * args.max_epochs - iter - cur_iter) * time_taken / 3600
117
+
118
+ if args.onGPU and torch.cuda.device_count() > 1:
119
+ output = gather(pred, 0, dim=0)
120
+
121
+ # Computing F-measure and IoU on GPU
122
+ with torch.no_grad():
123
+ f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target_var.cpu().numpy())
124
+
125
+ if iter % 5 == 0:
126
+ print('\riteration: [%d/%d] f1: %.3f lr: %.7f loss: %.3f time:%.3f h' % (
127
+ iter + cur_iter, max_batches * args.max_epochs, f1, lr, loss.data.item(),
128
+ res_time),
129
+ end='')
130
+
131
+ average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)
132
+ scores = salEvalVal.get_scores()
133
+
134
+ return average_epoch_loss_train, scores, lr
135
+
136
+
137
+ def trainValidateSegmentation(args):
138
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
139
+
140
+ torch.backends.cudnn.benchmark = True
141
+
142
+ init_seed(args.seed)
143
+
144
+ args.savedir = args.savedir + '_' + args.file_root + '_iter_' + str(args.max_steps) + '_lr_' + str(args.lr) + '/'
145
+
146
+ if args.file_root == 'LEVIR':
147
+ args.file_root = './levir_cd_256'
148
+ elif args.file_root == 'WHU':
149
+ args.file_root = './whu_cd_256'
150
+ elif args.file_root == 'CLCD':
151
+ args.file_root = './clcd_256'
152
+ elif args.file_root == 'SYSU':
153
+ args.file_root = './sysu_256'
154
+ elif args.file_root == 'OSCD':
155
+ args.file_root = 'oscd_256'
156
+ else:
157
+ raise TypeError('%s has not defined' % args.file_root)
158
+
159
+ if not os.path.exists(args.savedir):
160
+ os.makedirs(args.savedir)
161
+
162
+
163
+ model = Trainer(args.model_type).float()
164
+ if args.onGPU:
165
+ model = model.cuda()
166
+
167
+ # mean = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
168
+ # std = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
169
+
170
+ mean = [0.406, 0.456, 0.485, 0.406, 0.456, 0.485]
171
+ std = [0.225, 0.224, 0.229, 0.225, 0.224, 0.229]
172
+
173
+ # compose the data with transforms
174
+ trainDataset_main = myTransforms.Compose([
175
+ myTransforms.Normalize(mean=mean, std=std),
176
+ myTransforms.Scale(args.inWidth, args.inHeight),
177
+ myTransforms.RandomCropResize(int(7. / 224. * args.inWidth)),
178
+ myTransforms.RandomFlip(),
179
+ myTransforms.RandomExchange(),
180
+ myTransforms.ToTensor()
181
+ ])
182
+
183
+ valDataset = myTransforms.Compose([
184
+ myTransforms.Normalize(mean=mean, std=std),
185
+ myTransforms.Scale(args.inWidth, args.inHeight),
186
+ myTransforms.ToTensor()
187
+ ])
188
+
189
+ train_data = myDataLoader.Dataset(file_root=args.file_root, mode="train", transform=trainDataset_main)
190
+
191
+ trainLoader = torch.utils.data.DataLoader(
192
+ train_data,
193
+ batch_size=args.batch_size, shuffle=True,
194
+ num_workers=args.num_workers, pin_memory=True, drop_last=False
195
+ )
196
+
197
+ test_data = myDataLoader.Dataset(file_root=args.file_root, mode="test", transform=valDataset)
198
+ testLoader = torch.utils.data.DataLoader(
199
+ test_data, shuffle=False,
200
+ batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True)
201
+
202
+
203
+ max_batches = len(trainLoader)
204
+ print('For each epoch, we have {} batches'.format(max_batches))
205
+
206
+ if args.onGPU:
207
+ cudnn.benchmark = True
208
+
209
+ args.max_epochs = int(np.ceil(args.max_steps / max_batches))
210
+ start_epoch = 0
211
+ cur_iter = 0
212
+ max_F1_val = 0
213
+
214
+ if args.resume is not None:
215
+ args.resume = args.savedir + 'checkpoint.pth.tar'
216
+ if os.path.isfile(args.resume):
217
+ print("=> loading checkpoint '{}'".format(args.resume))
218
+ checkpoint = torch.load(args.resume)
219
+ start_epoch = checkpoint['epoch']
220
+ cur_iter = start_epoch * len(trainLoader)
221
+ # args.lr = checkpoint['lr']
222
+ model.load_state_dict(checkpoint['state_dict'])
223
+ print("=> loaded checkpoint '{}' (epoch {})"
224
+ .format(args.resume, checkpoint['epoch']))
225
+ else:
226
+ print("=> no checkpoint found at '{}'".format(args.resume))
227
+
228
+ logFileLoc = args.savedir + args.logFile
229
+ if os.path.isfile(logFileLoc):
230
+ logger = open(logFileLoc, 'a')
231
+ else:
232
+ logger = open(logFileLoc, 'w')
233
+ logger.write(
234
+ "\n%s\t%s\t%s\t%s\t%s\t%s\t%s" % ('Epoch', 'Kappa (val)', 'IoU (val)', 'F1 (val)', 'R (val)', 'P (val)', 'OA (val)'))
235
+ logger.flush()
236
+
237
+ optimizer = torch.optim.Adam(model.parameters(), args.lr, (0.9, 0.99), eps=1e-08, weight_decay=1e-4)
238
+
239
+ for epoch in range(start_epoch, args.max_epochs):
240
+ lossTr, score_tr, lr = \
241
+ train(args, trainLoader, model, optimizer, epoch, max_batches, cur_iter)
242
+ cur_iter += len(trainLoader)
243
+
244
+ torch.cuda.empty_cache()
245
+
246
+ # evaluate on validation set
247
+ if epoch == 0:
248
+ continue
249
+
250
+ lossVal, score_val = val(args, testLoader, model)
251
+ torch.cuda.empty_cache()
252
+ logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" % (epoch, score_val['Kappa'], score_val['IoU'],
253
+ score_val['F1'], score_val['recall'],
254
+ score_val['precision'], score_val['OA']))
255
+ logger.flush()
256
+
257
+ torch.save({
258
+ 'epoch': epoch + 1,
259
+ 'arch': str(model),
260
+ 'state_dict': model.state_dict(),
261
+ 'optimizer': optimizer.state_dict(),
262
+ 'lossTr': lossTr,
263
+ 'lossVal': lossVal,
264
+ 'F_Tr': score_tr['F1'],
265
+ 'F_val': score_val['F1'],
266
+ 'lr': lr
267
+ }, args.savedir + 'checkpoint.pth.tar')
268
+
269
+ # save the model also
270
+ model_file_name = args.savedir + 'best_model.pth'
271
+ if epoch % 1 == 0 and max_F1_val <= score_val['F1']:
272
+ max_F1_val = score_val['F1']
273
+ torch.save(model.state_dict(), model_file_name)
274
+
275
+ print("Epoch " + str(epoch) + ': Details')
276
+ print("\nEpoch No. %d:\tTrain Loss = %.4f\tVal Loss = %.4f\t F1(tr) = %.4f\t F1(val) = %.4f" \
277
+ % (epoch, lossTr, lossVal, score_tr['F1'], score_val['F1']))
278
+ torch.cuda.empty_cache()
279
+
280
+ state_dict = torch.load(model_file_name)
281
+ model.load_state_dict(state_dict)
282
+
283
+ loss_test, score_test = val(args, testLoader, model)
284
+ print("\nTest :\t Kappa (te) = %.4f\t IoU (te) = %.4f\t F1 (te) = %.4f\t R (te) = %.4f\t P (te) = %.4f" \
285
+ % (score_test['Kappa'], score_test['IoU'], score_test['F1'], score_test['recall'], score_test['precision']))
286
+ logger.write("\n%s\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" % ('Test', score_test['Kappa'], score_test['IoU'],
287
+ score_test['F1'], score_test['recall'],
288
+ score_test['precision'], score_test['OA']))
289
+ logger.flush()
290
+ logger.close()
291
+
292
+
293
+ if __name__ == '__main__':
294
+ parser = ArgumentParser()
295
+ parser.add_argument('--file_root', default="LEVIR", help='Data directory | LEVIR | WHU | CLCD | SYSU | OSCD ')
296
+ parser.add_argument('--inWidth', type=int, default=256, help='Width of RGB image')
297
+ parser.add_argument('--inHeight', type=int, default=256, help='Height of RGB image')
298
+ parser.add_argument('--max_steps', type=int, default=80000, help='Max. number of iterations')
299
+ parser.add_argument('--num_workers', type=int, default=4, help='No. of parallel threads')
300
+ parser.add_argument('--model_type', type=str, default='small', help='select vit model type | tiny | small')
301
+ parser.add_argument('--batch_size', type=int, default=16, help='Batch size')
302
+ parser.add_argument('--step_loss', type=int, default=100, help='Decrease learning rate after how many epochs')
303
+ parser.add_argument('--lr', type=float, default=2e-4, help='Initial learning rate')
304
+ parser.add_argument('--lr_mode', default='poly', help='Learning rate policy, step or poly')
305
+ parser.add_argument('--seed', default=16, help='initialization seed number')
306
+ parser.add_argument('--savedir', default='./results', help='Directory to save the results')
307
+ parser.add_argument('--resume', default=None, help='Use this checkpoint to continue training | '
308
+ './results_ep100/checkpoint.pth.tar')
309
+ parser.add_argument('--logFile', default='trainValLog.txt',
310
+ help='File that stores the training and validation logs')
311
+ parser.add_argument('--onGPU', default=True, type=lambda x: (str(x).lower() == 'true'),
312
+ help='Run on CPU or GPU. If TRUE, then GPU.')
313
+ parser.add_argument('--gpu_id', default=0, type=int, help='GPU id number')
314
+
315
+ args = parser.parse_args()
316
+ print('Called with args:')
317
+ print(args)
318
+
319
+ trainValidateSegmentation(args)