Upload main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
from model.trainer import Trainer
|
| 4 |
+
|
| 5 |
+
sys.path.insert(0, '.')
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import torch.backends.cudnn as cudnn
|
| 10 |
+
from torch.nn.parallel import gather
|
| 11 |
+
import torch.optim.lr_scheduler
|
| 12 |
+
|
| 13 |
+
import dataset.dataset as myDataLoader
|
| 14 |
+
import dataset.Transforms as myTransforms
|
| 15 |
+
from model.metric_tool import ConfuseMatrixMeter
|
| 16 |
+
from model.utils import BCEDiceLoss, init_seed, adjust_learning_rate
|
| 17 |
+
|
| 18 |
+
import os, time
|
| 19 |
+
import numpy as np
|
| 20 |
+
from argparse import ArgumentParser
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@torch.no_grad()
|
| 25 |
+
def val(args, val_loader, model):
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
salEvalVal = ConfuseMatrixMeter(n_class=2)
|
| 29 |
+
|
| 30 |
+
epoch_loss = []
|
| 31 |
+
|
| 32 |
+
total_batches = len(val_loader)
|
| 33 |
+
print(len(val_loader))
|
| 34 |
+
for iter, batched_inputs in enumerate(val_loader):
|
| 35 |
+
|
| 36 |
+
img, target = batched_inputs
|
| 37 |
+
pre_img = img[:, 0:3]
|
| 38 |
+
post_img = img[:, 3:6]
|
| 39 |
+
|
| 40 |
+
start_time = time.time()
|
| 41 |
+
|
| 42 |
+
if args.onGPU == True:
|
| 43 |
+
pre_img = pre_img.cuda()
|
| 44 |
+
target = target.cuda()
|
| 45 |
+
post_img = post_img.cuda()
|
| 46 |
+
|
| 47 |
+
pre_img_var = torch.autograd.Variable(pre_img).float()
|
| 48 |
+
post_img_var = torch.autograd.Variable(post_img).float()
|
| 49 |
+
target_var = torch.autograd.Variable(target).float()
|
| 50 |
+
|
| 51 |
+
# run the mdoel
|
| 52 |
+
output = model(pre_img_var, post_img_var)
|
| 53 |
+
loss = BCEDiceLoss(output, target_var)
|
| 54 |
+
|
| 55 |
+
pred = torch.where(output > 0.5, torch.ones_like(output), torch.zeros_like(output)).long()
|
| 56 |
+
|
| 57 |
+
# torch.cuda.synchronize()
|
| 58 |
+
time_taken = time.time() - start_time
|
| 59 |
+
|
| 60 |
+
epoch_loss.append(loss.data.item())
|
| 61 |
+
|
| 62 |
+
# compute the confusion matrix
|
| 63 |
+
if args.onGPU and torch.cuda.device_count() > 1:
|
| 64 |
+
output = gather(pred, 0, dim=0)
|
| 65 |
+
# salEvalVal.addBatch(pred, target_var)
|
| 66 |
+
f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target_var.cpu().numpy())
|
| 67 |
+
if iter % 5 == 0:
|
| 68 |
+
print('\r[%d/%d] F1: %3f loss: %.3f time: %.3f' % (iter, total_batches, f1, loss.data.item(), time_taken),
|
| 69 |
+
end='')
|
| 70 |
+
|
| 71 |
+
average_epoch_loss_val = sum(epoch_loss) / len(epoch_loss)
|
| 72 |
+
scores = salEvalVal.get_scores()
|
| 73 |
+
|
| 74 |
+
return average_epoch_loss_val, scores
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def train(args, train_loader, model, optimizer, epoch, max_batches, cur_iter=0, lr_factor=1.):
|
| 78 |
+
# switch to train mode
|
| 79 |
+
model.train()
|
| 80 |
+
|
| 81 |
+
salEvalVal = ConfuseMatrixMeter(n_class=2)
|
| 82 |
+
epoch_loss = []
|
| 83 |
+
|
| 84 |
+
for iter, batched_inputs in enumerate(train_loader):
|
| 85 |
+
|
| 86 |
+
img, target = batched_inputs
|
| 87 |
+
pre_img = img[:, 0:3]
|
| 88 |
+
post_img = img[:, 3:6]
|
| 89 |
+
|
| 90 |
+
start_time = time.time()
|
| 91 |
+
|
| 92 |
+
# adjust the learning rate
|
| 93 |
+
lr = adjust_learning_rate(args, optimizer, epoch, iter + cur_iter, max_batches, lr_factor=lr_factor)
|
| 94 |
+
|
| 95 |
+
if args.onGPU == True:
|
| 96 |
+
pre_img = pre_img.cuda()
|
| 97 |
+
target = target.cuda()
|
| 98 |
+
post_img = post_img.cuda()
|
| 99 |
+
|
| 100 |
+
pre_img_var = torch.autograd.Variable(pre_img).float()
|
| 101 |
+
post_img_var = torch.autograd.Variable(post_img).float()
|
| 102 |
+
target_var = torch.autograd.Variable(target).float()
|
| 103 |
+
|
| 104 |
+
# run the model
|
| 105 |
+
output = model(pre_img_var, post_img_var)
|
| 106 |
+
loss = BCEDiceLoss(output, target_var)
|
| 107 |
+
|
| 108 |
+
pred = torch.where(output > 0.5, torch.ones_like(output), torch.zeros_like(output)).long()
|
| 109 |
+
|
| 110 |
+
optimizer.zero_grad()
|
| 111 |
+
loss.backward()
|
| 112 |
+
optimizer.step()
|
| 113 |
+
|
| 114 |
+
epoch_loss.append(loss.data.item())
|
| 115 |
+
time_taken = time.time() - start_time
|
| 116 |
+
res_time = (max_batches * args.max_epochs - iter - cur_iter) * time_taken / 3600
|
| 117 |
+
|
| 118 |
+
if args.onGPU and torch.cuda.device_count() > 1:
|
| 119 |
+
output = gather(pred, 0, dim=0)
|
| 120 |
+
|
| 121 |
+
# Computing F-measure and IoU on GPU
|
| 122 |
+
with torch.no_grad():
|
| 123 |
+
f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target_var.cpu().numpy())
|
| 124 |
+
|
| 125 |
+
if iter % 5 == 0:
|
| 126 |
+
print('\riteration: [%d/%d] f1: %.3f lr: %.7f loss: %.3f time:%.3f h' % (
|
| 127 |
+
iter + cur_iter, max_batches * args.max_epochs, f1, lr, loss.data.item(),
|
| 128 |
+
res_time),
|
| 129 |
+
end='')
|
| 130 |
+
|
| 131 |
+
average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)
|
| 132 |
+
scores = salEvalVal.get_scores()
|
| 133 |
+
|
| 134 |
+
return average_epoch_loss_train, scores, lr
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def trainValidateSegmentation(args):
|
| 138 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
|
| 139 |
+
|
| 140 |
+
torch.backends.cudnn.benchmark = True
|
| 141 |
+
|
| 142 |
+
init_seed(args.seed)
|
| 143 |
+
|
| 144 |
+
args.savedir = args.savedir + '_' + args.file_root + '_iter_' + str(args.max_steps) + '_lr_' + str(args.lr) + '/'
|
| 145 |
+
|
| 146 |
+
if args.file_root == 'LEVIR':
|
| 147 |
+
args.file_root = './levir_cd_256'
|
| 148 |
+
elif args.file_root == 'WHU':
|
| 149 |
+
args.file_root = './whu_cd_256'
|
| 150 |
+
elif args.file_root == 'CLCD':
|
| 151 |
+
args.file_root = './clcd_256'
|
| 152 |
+
elif args.file_root == 'SYSU':
|
| 153 |
+
args.file_root = './sysu_256'
|
| 154 |
+
elif args.file_root == 'OSCD':
|
| 155 |
+
args.file_root = 'oscd_256'
|
| 156 |
+
else:
|
| 157 |
+
raise TypeError('%s has not defined' % args.file_root)
|
| 158 |
+
|
| 159 |
+
if not os.path.exists(args.savedir):
|
| 160 |
+
os.makedirs(args.savedir)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
model = Trainer(args.model_type).float()
|
| 164 |
+
if args.onGPU:
|
| 165 |
+
model = model.cuda()
|
| 166 |
+
|
| 167 |
+
# mean = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
| 168 |
+
# std = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
|
| 169 |
+
|
| 170 |
+
mean = [0.406, 0.456, 0.485, 0.406, 0.456, 0.485]
|
| 171 |
+
std = [0.225, 0.224, 0.229, 0.225, 0.224, 0.229]
|
| 172 |
+
|
| 173 |
+
# compose the data with transforms
|
| 174 |
+
trainDataset_main = myTransforms.Compose([
|
| 175 |
+
myTransforms.Normalize(mean=mean, std=std),
|
| 176 |
+
myTransforms.Scale(args.inWidth, args.inHeight),
|
| 177 |
+
myTransforms.RandomCropResize(int(7. / 224. * args.inWidth)),
|
| 178 |
+
myTransforms.RandomFlip(),
|
| 179 |
+
myTransforms.RandomExchange(),
|
| 180 |
+
myTransforms.ToTensor()
|
| 181 |
+
])
|
| 182 |
+
|
| 183 |
+
valDataset = myTransforms.Compose([
|
| 184 |
+
myTransforms.Normalize(mean=mean, std=std),
|
| 185 |
+
myTransforms.Scale(args.inWidth, args.inHeight),
|
| 186 |
+
myTransforms.ToTensor()
|
| 187 |
+
])
|
| 188 |
+
|
| 189 |
+
train_data = myDataLoader.Dataset(file_root=args.file_root, mode="train", transform=trainDataset_main)
|
| 190 |
+
|
| 191 |
+
trainLoader = torch.utils.data.DataLoader(
|
| 192 |
+
train_data,
|
| 193 |
+
batch_size=args.batch_size, shuffle=True,
|
| 194 |
+
num_workers=args.num_workers, pin_memory=True, drop_last=False
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
test_data = myDataLoader.Dataset(file_root=args.file_root, mode="test", transform=valDataset)
|
| 198 |
+
testLoader = torch.utils.data.DataLoader(
|
| 199 |
+
test_data, shuffle=False,
|
| 200 |
+
batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
max_batches = len(trainLoader)
|
| 204 |
+
print('For each epoch, we have {} batches'.format(max_batches))
|
| 205 |
+
|
| 206 |
+
if args.onGPU:
|
| 207 |
+
cudnn.benchmark = True
|
| 208 |
+
|
| 209 |
+
args.max_epochs = int(np.ceil(args.max_steps / max_batches))
|
| 210 |
+
start_epoch = 0
|
| 211 |
+
cur_iter = 0
|
| 212 |
+
max_F1_val = 0
|
| 213 |
+
|
| 214 |
+
if args.resume is not None:
|
| 215 |
+
args.resume = args.savedir + 'checkpoint.pth.tar'
|
| 216 |
+
if os.path.isfile(args.resume):
|
| 217 |
+
print("=> loading checkpoint '{}'".format(args.resume))
|
| 218 |
+
checkpoint = torch.load(args.resume)
|
| 219 |
+
start_epoch = checkpoint['epoch']
|
| 220 |
+
cur_iter = start_epoch * len(trainLoader)
|
| 221 |
+
# args.lr = checkpoint['lr']
|
| 222 |
+
model.load_state_dict(checkpoint['state_dict'])
|
| 223 |
+
print("=> loaded checkpoint '{}' (epoch {})"
|
| 224 |
+
.format(args.resume, checkpoint['epoch']))
|
| 225 |
+
else:
|
| 226 |
+
print("=> no checkpoint found at '{}'".format(args.resume))
|
| 227 |
+
|
| 228 |
+
logFileLoc = args.savedir + args.logFile
|
| 229 |
+
if os.path.isfile(logFileLoc):
|
| 230 |
+
logger = open(logFileLoc, 'a')
|
| 231 |
+
else:
|
| 232 |
+
logger = open(logFileLoc, 'w')
|
| 233 |
+
logger.write(
|
| 234 |
+
"\n%s\t%s\t%s\t%s\t%s\t%s\t%s" % ('Epoch', 'Kappa (val)', 'IoU (val)', 'F1 (val)', 'R (val)', 'P (val)', 'OA (val)'))
|
| 235 |
+
logger.flush()
|
| 236 |
+
|
| 237 |
+
optimizer = torch.optim.Adam(model.parameters(), args.lr, (0.9, 0.99), eps=1e-08, weight_decay=1e-4)
|
| 238 |
+
|
| 239 |
+
for epoch in range(start_epoch, args.max_epochs):
|
| 240 |
+
lossTr, score_tr, lr = \
|
| 241 |
+
train(args, trainLoader, model, optimizer, epoch, max_batches, cur_iter)
|
| 242 |
+
cur_iter += len(trainLoader)
|
| 243 |
+
|
| 244 |
+
torch.cuda.empty_cache()
|
| 245 |
+
|
| 246 |
+
# evaluate on validation set
|
| 247 |
+
if epoch == 0:
|
| 248 |
+
continue
|
| 249 |
+
|
| 250 |
+
lossVal, score_val = val(args, testLoader, model)
|
| 251 |
+
torch.cuda.empty_cache()
|
| 252 |
+
logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" % (epoch, score_val['Kappa'], score_val['IoU'],
|
| 253 |
+
score_val['F1'], score_val['recall'],
|
| 254 |
+
score_val['precision'], score_val['OA']))
|
| 255 |
+
logger.flush()
|
| 256 |
+
|
| 257 |
+
torch.save({
|
| 258 |
+
'epoch': epoch + 1,
|
| 259 |
+
'arch': str(model),
|
| 260 |
+
'state_dict': model.state_dict(),
|
| 261 |
+
'optimizer': optimizer.state_dict(),
|
| 262 |
+
'lossTr': lossTr,
|
| 263 |
+
'lossVal': lossVal,
|
| 264 |
+
'F_Tr': score_tr['F1'],
|
| 265 |
+
'F_val': score_val['F1'],
|
| 266 |
+
'lr': lr
|
| 267 |
+
}, args.savedir + 'checkpoint.pth.tar')
|
| 268 |
+
|
| 269 |
+
# save the model also
|
| 270 |
+
model_file_name = args.savedir + 'best_model.pth'
|
| 271 |
+
if epoch % 1 == 0 and max_F1_val <= score_val['F1']:
|
| 272 |
+
max_F1_val = score_val['F1']
|
| 273 |
+
torch.save(model.state_dict(), model_file_name)
|
| 274 |
+
|
| 275 |
+
print("Epoch " + str(epoch) + ': Details')
|
| 276 |
+
print("\nEpoch No. %d:\tTrain Loss = %.4f\tVal Loss = %.4f\t F1(tr) = %.4f\t F1(val) = %.4f" \
|
| 277 |
+
% (epoch, lossTr, lossVal, score_tr['F1'], score_val['F1']))
|
| 278 |
+
torch.cuda.empty_cache()
|
| 279 |
+
|
| 280 |
+
state_dict = torch.load(model_file_name)
|
| 281 |
+
model.load_state_dict(state_dict)
|
| 282 |
+
|
| 283 |
+
loss_test, score_test = val(args, testLoader, model)
|
| 284 |
+
print("\nTest :\t Kappa (te) = %.4f\t IoU (te) = %.4f\t F1 (te) = %.4f\t R (te) = %.4f\t P (te) = %.4f" \
|
| 285 |
+
% (score_test['Kappa'], score_test['IoU'], score_test['F1'], score_test['recall'], score_test['precision']))
|
| 286 |
+
logger.write("\n%s\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" % ('Test', score_test['Kappa'], score_test['IoU'],
|
| 287 |
+
score_test['F1'], score_test['recall'],
|
| 288 |
+
score_test['precision'], score_test['OA']))
|
| 289 |
+
logger.flush()
|
| 290 |
+
logger.close()
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
if __name__ == '__main__':
|
| 294 |
+
parser = ArgumentParser()
|
| 295 |
+
parser.add_argument('--file_root', default="LEVIR", help='Data directory | LEVIR | WHU | CLCD | SYSU | OSCD ')
|
| 296 |
+
parser.add_argument('--inWidth', type=int, default=256, help='Width of RGB image')
|
| 297 |
+
parser.add_argument('--inHeight', type=int, default=256, help='Height of RGB image')
|
| 298 |
+
parser.add_argument('--max_steps', type=int, default=80000, help='Max. number of iterations')
|
| 299 |
+
parser.add_argument('--num_workers', type=int, default=4, help='No. of parallel threads')
|
| 300 |
+
parser.add_argument('--model_type', type=str, default='small', help='select vit model type | tiny | small')
|
| 301 |
+
parser.add_argument('--batch_size', type=int, default=16, help='Batch size')
|
| 302 |
+
parser.add_argument('--step_loss', type=int, default=100, help='Decrease learning rate after how many epochs')
|
| 303 |
+
parser.add_argument('--lr', type=float, default=2e-4, help='Initial learning rate')
|
| 304 |
+
parser.add_argument('--lr_mode', default='poly', help='Learning rate policy, step or poly')
|
| 305 |
+
parser.add_argument('--seed', default=16, help='initialization seed number')
|
| 306 |
+
parser.add_argument('--savedir', default='./results', help='Directory to save the results')
|
| 307 |
+
parser.add_argument('--resume', default=None, help='Use this checkpoint to continue training | '
|
| 308 |
+
'./results_ep100/checkpoint.pth.tar')
|
| 309 |
+
parser.add_argument('--logFile', default='trainValLog.txt',
|
| 310 |
+
help='File that stores the training and validation logs')
|
| 311 |
+
parser.add_argument('--onGPU', default=True, type=lambda x: (str(x).lower() == 'true'),
|
| 312 |
+
help='Run on CPU or GPU. If TRUE, then GPU.')
|
| 313 |
+
parser.add_argument('--gpu_id', default=0, type=int, help='GPU id number')
|
| 314 |
+
|
| 315 |
+
args = parser.parse_args()
|
| 316 |
+
print('Called with args:')
|
| 317 |
+
print(args)
|
| 318 |
+
|
| 319 |
+
trainValidateSegmentation(args)
|