First Upload
Browse files- README.md +37 -3
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 274.16 +/- 20.37
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7929e53a03a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7929e53a0430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7929e53a04c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7929e53a0550>", "_build": "<function ActorCriticPolicy._build at 0x7929e53a05e0>", "forward": "<function ActorCriticPolicy.forward at 0x7929e53a0670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7929e53a0700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7929e53a0790>", "_predict": "<function ActorCriticPolicy._predict at 0x7929e53a0820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7929e53a08b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7929e53a0940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7929e53a09d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7929e533df00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728241074874925969, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoMmjxIpbe6jkyMuLx8gTyV++Q6ViNivQAAgD8AAIA/DXOWvdfejz/dAZu9XHT6voZZKr0TcnE7AAAAAAAAAABzrvO91A/FvICHzbtdhPO9uH4yPlKXvj4AAIA/AACAP1smgL7lSYY/4IiEvlmk075APGi+4p2ZvQAAAAAAAAAAptySvlEALb2IrqS6AWd2uR/Glj4rwNw5AACAPwAAgD+aRHG9wcqJPY7LDT3aGxy+v9S4uw0wZ70AAAAAAAAAADOzhzuvC2c+gJEBvU1YYL69SBm8hS51vQAAAAAAAAAAZiirPeYXLj9i4da9ro+jvvMhWT0AgSS+AAAAAAAAAADNxBm7j84juiD+TrsJDIQ4dI+fuhLA4jkAAIA/AACAPzqwbz6jYCE/brEwvsJnvr7b0eA9HUXevQAAAAAAAAAAAGVsvlosez4ae38+FqOavv1SfLxfFDA9AAAAAAAAAACa/He9w1FxuhOFTzma/TGzYTw+u+VgbrgAAIA/AAAAAHOdpr3c3368d56KPRrv7L2hZ409DWIHPwAAgD8AAIA/mrLxPNu1bD8mspm81QrJvpqDcDwGXt88AAAAAAAAAADNXTg9hzd4Pl1jbL5vRF++Xo/FvMj0Pr0AAAAAAAAAAJ2/xz5LqiE/baEoPaEJqb5Gpas+iRhFvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBP2SU1Q6+MAWyUTa4BjAF0lEdAkYV4sEq2B3V9lChoBkdAcoC9Brvb5GgHTbIBaAhHQJGFoKa5PM11fZQoaAZHQHDb7PyCnP5oB00MAWgIR0CRhfdsBQvYdX2UKGgGR0ByX93cHnloaAdNJgFoCEdAkYX9kSVW0nV9lChoBkdAcu1XQMQVbmgHTVwBaAhHQJGGCrXDm8x1fZQoaAZHQHH9s/pt78hoB000AWgIR0CRhxPEbYK6dX2UKGgGR0Bw+MkQf6oEaAdNLwFoCEdAkYcR91EE1XV9lChoBkdAcqYVQAMlTmgHTQUBaAhHQJGHptALRa51fZQoaAZHQHJjNI5HVgBoB00OAWgIR0CRiQKGtZFHdX2UKGgGR0Bw2sdXDFZQaAdNJwFoCEdAkYpYbjtG/nV9lChoBkdAcWhgPVd5ZGgHTRQBaAhHQJGKm5Dqnm91fZQoaAZHQHGtS5mRNh5oB00WAWgIR0CRix8BuGbkdX2UKGgGR0BRD6Mm4RVZaAdLwWgIR0CRi0r9ETg3dX2UKGgGR0Bs9je67NB4aAdNUwFoCEdAkYxarBCUo3V9lChoBkdAbjA4ACGN72gHTREBaAhHQJGNg+kgwGp1fZQoaAZHQG92t6X0Gu9oB00rAWgIR0CRja0uUUwjdX2UKGgGR0BxECDxsl9jaAdNJwFoCEdAkY4ehkAggXV9lChoBkdAcUBt78ejmGgHTS8BaAhHQJGOK/QBxPx1fZQoaAZHQG11z0g8r7RoB00mAWgIR0CRjqOXmeUZdX2UKGgGR0BRAYw7DEWJaAdL6WgIR0CRjsHd43WGdX2UKGgGR0BQot/e+Eh8aAdLwWgIR0CRjxjopx3ndX2UKGgGR0BxKkWIoE0SaAdNDgFoCEdAkY8hubZvk3V9lChoBkdAcwRS619fC2gHTT0BaAhHQJGPOvs7dSF1fZQoaAZHQHCKOLzf779oB00UAWgIR0CRj0sLORkmdX2UKGgGR0BzFaIxgy/LaAdNGQJoCEdAkY+09ZA6dXV9lChoBkdALD07bL2YfGgHS9ZoCEdAkZB7dFfAsXV9lChoBkdAcB5OGCZnc2gHS/RoCEdAkZKOjmCAc3V9lChoBkdAcaasjFAE+2gHTRoBaAhHQJGTJ8ohIOJ1fZQoaAZHQHDXIOMERrdoB00WAWgIR0CRk6rTH80ldX2UKGgGR0BR/Z/wy6+WaAdLxmgIR0CRlByOaOPvdX2UKGgGR0Bx5DAzpHI7aAdL+mgIR0CRlYdd3SrpdX2UKGgGR0Bxo+Cg9NeuaAdNEgFoCEdAkZZbNr0rb3V9lChoBkdAcXsHmA9V3mgHTSEBaAhHQJGX5aTwDvF1fZQoaAZHQG8ZmBnSOR1oB00eAWgIR0CRmT7iADq4dX2UKGgGR0ByZ6ICU5dXaAdNLQFoCEdAkZnc6vJRwnV9lChoBkdAcnRIEKVpsWgHTTUBaAhHQJGae2Zy+6B1fZQoaAZHQHLovHtF8XxoB001AWgIR0CRmpRgqmTDdX2UKGgGR0BwyPWy1NQCaAdNTQFoCEdAkZrFgUlAvHV9lChoBkdAS1zGcWj46GgHS75oCEdAkZus67ulXXV9lChoBkdAcXHomG/N7mgHTSQBaAhHQJGcOI0qH451fZQoaAZHQD8aHWSU1Q9oB0vRaAhHQJGc/dj5Kvp1fZQoaAZHQHHOU/4ZdfNoB01fAWgIR0CRnTfv4M4MdX2UKGgGR0BxYPCm/FisaAdL9WgIR0CRnWWoFV1fdX2UKGgGR0Bv/oEKVpsXaAdNEgFoCEdAkZ262v0ROHV9lChoBkdAchBKtPpIMGgHTUICaAhHQJGgi/Zdv891fZQoaAZHQHD2o91U2k1oB004AWgIR0CRoWKdhAnldX2UKGgGR0BwKVkGzKLbaAdL9mgIR0CRof4YaYNRdX2UKGgGR0Bx8mkk8ifQaAdNGAFoCEdAkaIlzhgmZ3V9lChoBkdARSPc1wYLs2gHS+JoCEdAkaI539rGi3V9lChoBkdAS8iGUOd5IGgHS7NoCEdAkaKsPrfLtHV9lChoBkdAcolBv73wkWgHTQoBaAhHQJGjI5Lh73R1fZQoaAZHQHIRtR77bcpoB01eAWgIR0CRo1qSowVTdX2UKGgGR0BwEh2JSBK+aAdNCAFoCEdAkaOzFl05l3V9lChoBkdATma6lLvkR2gHS+5oCEdAkaP1VLi++XV9lChoBkdAcRgQGfPHDWgHTSQBaAhHQJG1XxOLzf91fZQoaAZHQHEyZK8L8aZoB00gAWgIR0CRtzVsUIszdX2UKGgGR0Bu79jkMkQgaAdNHAFoCEdAkbe+4TbnHXV9lChoBkdAcBw4qgAZKmgHTTcBaAhHQJG4QXMyJsR1fZQoaAZHQHGmhyGSIP9oB01oAWgIR0CRuHRVZLZjdX2UKGgGR0BxDpIMBp6AaAdL5GgIR0CRumbCJoCddX2UKGgGR0BwPGCUX531aAdNBAFoCEdAkbrGG/N7jXV9lChoBkdAc3v9QoCuEGgHS/VoCEdAkbsQLiMo+nV9lChoBkdAcTc7tRekYWgHTQcBaAhHQJG8JsKsuFp1fZQoaAZHQHDovbTMJQdoB00BAWgIR0CRvKz3AVO9dX2UKGgGR0Bx5eXqqwQlaAdNHgFoCEdAkb17BoEjgXV9lChoBkdAb6PYDklu32gHTQ8BaAhHQJG9lv4ubqh1fZQoaAZHQHIC68Yht+FoB01+AWgIR0CRv3yYoiLVdX2UKGgGR0BzcKHCXQdCaAdNTAFoCEdAkb/ZJsfq5nV9lChoBkdAcoqaTfR/mWgHTVEBaAhHQJHAfFjurp91fZQoaAZHQHEI7KNhmXhoB00BAWgIR0CRwPVnmJWOdX2UKGgGR0BylGgrYoRaaAdNGwFoCEdAkcGToMa0hXV9lChoBkdAYp/3ai9Iw2gHTegDaAhHQJHBusq8UVV1fZQoaAZHQG3Hlc6eXiRoB01UAWgIR0CRwvKF7D2rdX2UKGgGR0BuaHFHavicaAdL+WgIR0CRwwpzcRDkdX2UKGgGR0BywcS/TLGJaAdNYgFoCEdAkcb0K3NLUXV9lChoBkdASdbwOOKfnWgHS8ZoCEdAkcc0EHMUy3V9lChoBkdAcD1ByS3b22gHTQ8BaAhHQJHHXX6InBt1fZQoaAZHQHEk2bb1yvNoB00oAWgIR0CRyIBTn7pFdX2UKGgGR0ByUCfAbhm5aAdNiwFoCEdAkcnxZdOZcHV9lChoBkdAQd2dVea8YmgHS9RoCEdAkcp2cnVoYnV9lChoBkdAb6WXVLBbfWgHTSgBaAhHQJHLcwaisXB1fZQoaAZHQHEEGY0EX+FoB03bAmgIR0CRzBWgezUrdX2UKGgGR0By52nivPkaaAdNKQFoCEdAkc0EWZZ0S3V9lChoBkdAUp9IPK+zt2gHS+FoCEdAkc1e0w8GLXV9lChoBkdAb9fRXwLE1mgHTTIBaAhHQJHPL8Q7LdN1fZQoaAZHQENKlu3trsVoB0vtaAhHQJHSmj7ALzB1fZQoaAZHQHJxU74i5d5oB00JAWgIR0CR04lOGj9GdX2UKGgGR0Bx2JaTwDvFaAdNGAFoCEdAkdPwAyVObnV9lChoBkdAb54DnNgSe2gHTQEBaAhHQJHUOZw4sEt1fZQoaAZHQHHwfp6hQFdoB02CAWgIR0CR1E189fTkdX2UKGgGR0BuCzUoa1kUaAdNWQJoCEdAkdUPuXu3MXV9lChoBkdAcULKU3XI2mgHTW0CaAhHQJHVPXJ5miB1fZQoaAZHQHDWWfPHDJloB00gAWgIR0CR1jJMQEpzdX2UKGgGR0ByisbwSamXaAdNBwFoCEdAkdZhBmf5DnV9lChoBkdAbVc/hVENOWgHTRABaAhHQJHX2mHgxah1fZQoaAZHQHH/xUR3/xVoB00/AWgIR0CR2Iq+rU9ZdX2UKGgGR0BxGBbor4FiaAdL/2gIR0CR2KQCSzPbdX2UKGgGR0BOnRMN+b3HaAdLtWgIR0CR2KQ7cO9WdX2UKGgGR0Bx4AIIF/x2aAdNOgFoCEdAkdj4cR15jnV9lChoBkdAcaFPPLPldWgHTXMBaAhHQJHZH5rP+n91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f590c3b5edb9fd5228640fb8860de9a17f34a2039a54c04a625a8d48a1454fe
|
3 |
+
size 148056
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7929e53a03a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7929e53a0430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7929e53a04c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7929e53a0550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7929e53a05e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7929e53a0670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7929e53a0700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7929e53a0790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7929e53a0820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7929e53a08b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7929e53a0940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7929e53a09d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7929e533df00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1728241074874925969,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoMmjxIpbe6jkyMuLx8gTyV++Q6ViNivQAAgD8AAIA/DXOWvdfejz/dAZu9XHT6voZZKr0TcnE7AAAAAAAAAABzrvO91A/FvICHzbtdhPO9uH4yPlKXvj4AAIA/AACAP1smgL7lSYY/4IiEvlmk075APGi+4p2ZvQAAAAAAAAAAptySvlEALb2IrqS6AWd2uR/Glj4rwNw5AACAPwAAgD+aRHG9wcqJPY7LDT3aGxy+v9S4uw0wZ70AAAAAAAAAADOzhzuvC2c+gJEBvU1YYL69SBm8hS51vQAAAAAAAAAAZiirPeYXLj9i4da9ro+jvvMhWT0AgSS+AAAAAAAAAADNxBm7j84juiD+TrsJDIQ4dI+fuhLA4jkAAIA/AACAPzqwbz6jYCE/brEwvsJnvr7b0eA9HUXevQAAAAAAAAAAAGVsvlosez4ae38+FqOavv1SfLxfFDA9AAAAAAAAAACa/He9w1FxuhOFTzma/TGzYTw+u+VgbrgAAIA/AAAAAHOdpr3c3368d56KPRrv7L2hZ409DWIHPwAAgD8AAIA/mrLxPNu1bD8mspm81QrJvpqDcDwGXt88AAAAAAAAAADNXTg9hzd4Pl1jbL5vRF++Xo/FvMj0Pr0AAAAAAAAAAJ2/xz5LqiE/baEoPaEJqb5Gpas+iRhFvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBP2SU1Q6+MAWyUTa4BjAF0lEdAkYV4sEq2B3V9lChoBkdAcoC9Brvb5GgHTbIBaAhHQJGFoKa5PM11fZQoaAZHQHDb7PyCnP5oB00MAWgIR0CRhfdsBQvYdX2UKGgGR0ByX93cHnloaAdNJgFoCEdAkYX9kSVW0nV9lChoBkdAcu1XQMQVbmgHTVwBaAhHQJGGCrXDm8x1fZQoaAZHQHH9s/pt78hoB000AWgIR0CRhxPEbYK6dX2UKGgGR0Bw+MkQf6oEaAdNLwFoCEdAkYcR91EE1XV9lChoBkdAcqYVQAMlTmgHTQUBaAhHQJGHptALRa51fZQoaAZHQHJjNI5HVgBoB00OAWgIR0CRiQKGtZFHdX2UKGgGR0Bw2sdXDFZQaAdNJwFoCEdAkYpYbjtG/nV9lChoBkdAcWhgPVd5ZGgHTRQBaAhHQJGKm5Dqnm91fZQoaAZHQHGtS5mRNh5oB00WAWgIR0CRix8BuGbkdX2UKGgGR0BRD6Mm4RVZaAdLwWgIR0CRi0r9ETg3dX2UKGgGR0Bs9je67NB4aAdNUwFoCEdAkYxarBCUo3V9lChoBkdAbjA4ACGN72gHTREBaAhHQJGNg+kgwGp1fZQoaAZHQG92t6X0Gu9oB00rAWgIR0CRja0uUUwjdX2UKGgGR0BxECDxsl9jaAdNJwFoCEdAkY4ehkAggXV9lChoBkdAcUBt78ejmGgHTS8BaAhHQJGOK/QBxPx1fZQoaAZHQG11z0g8r7RoB00mAWgIR0CRjqOXmeUZdX2UKGgGR0BRAYw7DEWJaAdL6WgIR0CRjsHd43WGdX2UKGgGR0BQot/e+Eh8aAdLwWgIR0CRjxjopx3ndX2UKGgGR0BxKkWIoE0SaAdNDgFoCEdAkY8hubZvk3V9lChoBkdAcwRS619fC2gHTT0BaAhHQJGPOvs7dSF1fZQoaAZHQHCKOLzf779oB00UAWgIR0CRj0sLORkmdX2UKGgGR0BzFaIxgy/LaAdNGQJoCEdAkY+09ZA6dXV9lChoBkdALD07bL2YfGgHS9ZoCEdAkZB7dFfAsXV9lChoBkdAcB5OGCZnc2gHS/RoCEdAkZKOjmCAc3V9lChoBkdAcaasjFAE+2gHTRoBaAhHQJGTJ8ohIOJ1fZQoaAZHQHDXIOMERrdoB00WAWgIR0CRk6rTH80ldX2UKGgGR0BR/Z/wy6+WaAdLxmgIR0CRlByOaOPvdX2UKGgGR0Bx5DAzpHI7aAdL+mgIR0CRlYdd3SrpdX2UKGgGR0Bxo+Cg9NeuaAdNEgFoCEdAkZZbNr0rb3V9lChoBkdAcXsHmA9V3mgHTSEBaAhHQJGX5aTwDvF1fZQoaAZHQG8ZmBnSOR1oB00eAWgIR0CRmT7iADq4dX2UKGgGR0ByZ6ICU5dXaAdNLQFoCEdAkZnc6vJRwnV9lChoBkdAcnRIEKVpsWgHTTUBaAhHQJGae2Zy+6B1fZQoaAZHQHLovHtF8XxoB001AWgIR0CRmpRgqmTDdX2UKGgGR0BwyPWy1NQCaAdNTQFoCEdAkZrFgUlAvHV9lChoBkdAS1zGcWj46GgHS75oCEdAkZus67ulXXV9lChoBkdAcXHomG/N7mgHTSQBaAhHQJGcOI0qH451fZQoaAZHQD8aHWSU1Q9oB0vRaAhHQJGc/dj5Kvp1fZQoaAZHQHHOU/4ZdfNoB01fAWgIR0CRnTfv4M4MdX2UKGgGR0BxYPCm/FisaAdL9WgIR0CRnWWoFV1fdX2UKGgGR0Bv/oEKVpsXaAdNEgFoCEdAkZ262v0ROHV9lChoBkdAchBKtPpIMGgHTUICaAhHQJGgi/Zdv891fZQoaAZHQHD2o91U2k1oB004AWgIR0CRoWKdhAnldX2UKGgGR0BwKVkGzKLbaAdL9mgIR0CRof4YaYNRdX2UKGgGR0Bx8mkk8ifQaAdNGAFoCEdAkaIlzhgmZ3V9lChoBkdARSPc1wYLs2gHS+JoCEdAkaI539rGi3V9lChoBkdAS8iGUOd5IGgHS7NoCEdAkaKsPrfLtHV9lChoBkdAcolBv73wkWgHTQoBaAhHQJGjI5Lh73R1fZQoaAZHQHIRtR77bcpoB01eAWgIR0CRo1qSowVTdX2UKGgGR0BwEh2JSBK+aAdNCAFoCEdAkaOzFl05l3V9lChoBkdATma6lLvkR2gHS+5oCEdAkaP1VLi++XV9lChoBkdAcRgQGfPHDWgHTSQBaAhHQJG1XxOLzf91fZQoaAZHQHEyZK8L8aZoB00gAWgIR0CRtzVsUIszdX2UKGgGR0Bu79jkMkQgaAdNHAFoCEdAkbe+4TbnHXV9lChoBkdAcBw4qgAZKmgHTTcBaAhHQJG4QXMyJsR1fZQoaAZHQHGmhyGSIP9oB01oAWgIR0CRuHRVZLZjdX2UKGgGR0BxDpIMBp6AaAdL5GgIR0CRumbCJoCddX2UKGgGR0BwPGCUX531aAdNBAFoCEdAkbrGG/N7jXV9lChoBkdAc3v9QoCuEGgHS/VoCEdAkbsQLiMo+nV9lChoBkdAcTc7tRekYWgHTQcBaAhHQJG8JsKsuFp1fZQoaAZHQHDovbTMJQdoB00BAWgIR0CRvKz3AVO9dX2UKGgGR0Bx5eXqqwQlaAdNHgFoCEdAkb17BoEjgXV9lChoBkdAb6PYDklu32gHTQ8BaAhHQJG9lv4ubqh1fZQoaAZHQHIC68Yht+FoB01+AWgIR0CRv3yYoiLVdX2UKGgGR0BzcKHCXQdCaAdNTAFoCEdAkb/ZJsfq5nV9lChoBkdAcoqaTfR/mWgHTVEBaAhHQJHAfFjurp91fZQoaAZHQHEI7KNhmXhoB00BAWgIR0CRwPVnmJWOdX2UKGgGR0BylGgrYoRaaAdNGwFoCEdAkcGToMa0hXV9lChoBkdAYp/3ai9Iw2gHTegDaAhHQJHBusq8UVV1fZQoaAZHQG3Hlc6eXiRoB01UAWgIR0CRwvKF7D2rdX2UKGgGR0BuaHFHavicaAdL+WgIR0CRwwpzcRDkdX2UKGgGR0BywcS/TLGJaAdNYgFoCEdAkcb0K3NLUXV9lChoBkdASdbwOOKfnWgHS8ZoCEdAkcc0EHMUy3V9lChoBkdAcD1ByS3b22gHTQ8BaAhHQJHHXX6InBt1fZQoaAZHQHEk2bb1yvNoB00oAWgIR0CRyIBTn7pFdX2UKGgGR0ByUCfAbhm5aAdNiwFoCEdAkcnxZdOZcHV9lChoBkdAQd2dVea8YmgHS9RoCEdAkcp2cnVoYnV9lChoBkdAb6WXVLBbfWgHTSgBaAhHQJHLcwaisXB1fZQoaAZHQHEEGY0EX+FoB03bAmgIR0CRzBWgezUrdX2UKGgGR0By52nivPkaaAdNKQFoCEdAkc0EWZZ0S3V9lChoBkdAUp9IPK+zt2gHS+FoCEdAkc1e0w8GLXV9lChoBkdAb9fRXwLE1mgHTTIBaAhHQJHPL8Q7LdN1fZQoaAZHQENKlu3trsVoB0vtaAhHQJHSmj7ALzB1fZQoaAZHQHJxU74i5d5oB00JAWgIR0CR04lOGj9GdX2UKGgGR0Bx2JaTwDvFaAdNGAFoCEdAkdPwAyVObnV9lChoBkdAb54DnNgSe2gHTQEBaAhHQJHUOZw4sEt1fZQoaAZHQHHwfp6hQFdoB02CAWgIR0CR1E189fTkdX2UKGgGR0BuCzUoa1kUaAdNWQJoCEdAkdUPuXu3MXV9lChoBkdAcULKU3XI2mgHTW0CaAhHQJHVPXJ5miB1fZQoaAZHQHDWWfPHDJloB00gAWgIR0CR1jJMQEpzdX2UKGgGR0ByisbwSamXaAdNBwFoCEdAkdZhBmf5DnV9lChoBkdAbVc/hVENOWgHTRABaAhHQJHX2mHgxah1fZQoaAZHQHH/xUR3/xVoB00/AWgIR0CR2Iq+rU9ZdX2UKGgGR0BxGBbor4FiaAdL/2gIR0CR2KQCSzPbdX2UKGgGR0BOnRMN+b3HaAdLtWgIR0CR2KQ7cO9WdX2UKGgGR0Bx4AIIF/x2aAdNOgFoCEdAkdj4cR15jnV9lChoBkdAcaFPPLPldWgHTXMBaAhHQJHZH5rP+n91ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d37bc9e97b831e954143c94d13efaddb2a31e588aeba7c7dee6fc27c831e017
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:305a6de07fe9a4008853ec8562f6730d6e74eed0305a9b20d84c1d61edf3ef9f
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (179 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.1645476, "std_reward": 20.373016090796185, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-06T19:25:13.587605"}
|