IlyaGusev commited on
Commit
cb4a592
1 Parent(s): 4595144

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -6
README.md CHANGED
@@ -14,7 +14,13 @@ license: apache-2.0
14
 
15
  ## Model description
16
 
17
- [More Information Needed]
 
 
 
 
 
 
18
 
19
  ## Intended uses & limitations
20
 
@@ -63,19 +69,21 @@ pipe_predict(texts, pipe)
63
 
64
  #### Limitations and bias
65
 
66
- [More Information Needed]
67
 
68
  ## Training data
69
 
70
- [More Information Needed]
 
71
 
72
  ## Training procedure
73
 
74
- [More Information Needed]
 
75
 
76
  ## Eval results
77
 
78
- [More Information Needed]
79
 
80
  ### BibTeX entry and citation info
81
 
@@ -88,4 +96,4 @@ pipe_predict(texts, pipe)
88
  archivePrefix={arXiv},
89
  primaryClass={cs.CL}
90
  }
91
- ```
 
14
 
15
  ## Model description
16
 
17
+ This model was trained to predict the presence of causal relations between two headlines. This model is for the Simple task with 3 possible labels: A causes B, B causes A, no causal relation. English and Russian languages are supported.
18
+
19
+ You can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with </s> token.
20
+ For example:
21
+ ```
22
+ Песков опроверг свой перевод на удаленку</s>Дмитрий Песков перешел на удаленку
23
+ ```
24
 
25
  ## Intended uses & limitations
26
 
 
69
 
70
  #### Limitations and bias
71
 
72
+ The models are intended to be used on news headlines. No other limitations are known.
73
 
74
  ## Training data
75
 
76
+ * HuggingFace dataset: [IlyaGusev/headline_cause](https://huggingface.co/datasets/IlyaGusev/headline_cause)
77
+ * GitHub: [IlyaGusev/HeadlineCause](https://github.com/IlyaGusev/HeadlineCause)
78
 
79
  ## Training procedure
80
 
81
+ * Notebook: [HeadlineCause](https://colab.research.google.com/drive/1NAnD0OJ0TnYCJRsHpYUyYkjr_yi8ObcA)
82
+ * Stand-alone script: [train.py](https://github.com/IlyaGusev/HeadlineCause/blob/main/headline_cause/train.py)
83
 
84
  ## Eval results
85
 
86
+ Evaluation results can be found in the [arxiv paper](https://arxiv.org/pdf/2108.12626.pdf).
87
 
88
  ### BibTeX entry and citation info
89
 
 
96
  archivePrefix={arXiv},
97
  primaryClass={cs.CL}
98
  }
99
+ ```