IlyaGusev commited on
Commit
9c854b3
1 Parent(s): 92dc5ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -7
README.md CHANGED
@@ -21,29 +21,28 @@ This is the model for abstractive summarization for Russian based on [rut5-base]
21
 
22
  #### How to use
23
 
24
- ```python
25
- from transformers import T5Tokenizer, T5ForConditionalGeneration
26
 
27
- article_text = "..."
 
28
 
29
  model_name = "IlyaGusev/rut5-base-sum-gazeta"
30
- tokenizer = T5Tokenizer.from_pretrained(model_name)
31
  model = T5ForConditionalGeneration.from_pretrained(model_name)
32
 
 
 
33
  input_ids = tokenizer(
34
  [article_text],
35
  add_special_tokens=True,
36
  padding="max_length",
37
  truncation=True,
38
- max_length=400,
39
  return_tensors="pt"
40
  )["input_ids"]
41
 
42
  output_ids = model.generate(
43
  input_ids=input_ids,
44
- max_length=200,
45
  no_repeat_ngram_size=3,
46
- num_beams=5,
47
  early_stopping=True
48
  )[0]
49
 
 
21
 
22
  #### How to use
23
 
24
+ Colab: [link](https://colab.research.google.com/drive/1re5E26ZIDUpAx1gOCZkbF3hcwjozmgG0)
 
25
 
26
+ ```python
27
+ from transformers import AutoTokenizer, T5ForConditionalGeneration
28
 
29
  model_name = "IlyaGusev/rut5-base-sum-gazeta"
30
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
31
  model = T5ForConditionalGeneration.from_pretrained(model_name)
32
 
33
+ article_text = ".."
34
+
35
  input_ids = tokenizer(
36
  [article_text],
37
  add_special_tokens=True,
38
  padding="max_length",
39
  truncation=True,
 
40
  return_tensors="pt"
41
  )["input_ids"]
42
 
43
  output_ids = model.generate(
44
  input_ids=input_ids,
 
45
  no_repeat_ngram_size=3,
 
46
  early_stopping=True
47
  )[0]
48