Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
- ru-RU
|
5 |
+
tags:
|
6 |
+
- summarization
|
7 |
+
- t5
|
8 |
+
datasets:
|
9 |
+
- IlyaGusev/gazeta
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
# RuT5SumGazeta
|
14 |
+
|
15 |
+
## Model description
|
16 |
+
|
17 |
+
This is the model for abstractive summarization for Russian based on [rut5-base](https://huggingface.co/cointegrated/rut5-base).
|
18 |
+
|
19 |
+
|
20 |
+
## Intended uses & limitations
|
21 |
+
|
22 |
+
#### How to use
|
23 |
+
|
24 |
+
```python
|
25 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
26 |
+
|
27 |
+
article_text = "..."
|
28 |
+
|
29 |
+
model_name = "IlyaGusev/rut5-base-sum-gazeta"
|
30 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
31 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
32 |
+
|
33 |
+
input_ids = tokenizer(
|
34 |
+
[article_text],
|
35 |
+
add_special_tokens=True,
|
36 |
+
padding="max_length",
|
37 |
+
truncation=True,
|
38 |
+
max_length=400,
|
39 |
+
return_tensors="pt"
|
40 |
+
)["input_ids"]
|
41 |
+
|
42 |
+
output_ids = model.generate(
|
43 |
+
input_ids=input_ids,
|
44 |
+
max_length=200,
|
45 |
+
no_repeat_ngram_size=3,
|
46 |
+
num_beams=5,
|
47 |
+
early_stopping=True
|
48 |
+
)[0]
|
49 |
+
|
50 |
+
summary = tokenizer.decode(output_ids, skip_special_tokens=True)
|
51 |
+
print(summary)
|
52 |
+
```
|
53 |
+
|
54 |
+
## Training data
|
55 |
+
|
56 |
+
- Dataset: https://github.com/IlyaGusev/gazeta
|
57 |
+
|
58 |
+
## Training procedure
|
59 |
+
|
60 |
+
- Training script: [TBA]
|
61 |
+
|
62 |
+
## Eval results
|
63 |
+
|
64 |
+
| Model | R-1-f | R-2-f | R-L-f | chrF | BLEU |
|
65 |
+
|:--------------------------|:------|:------|:------|:-----|:-----|
|
66 |
+
| rut5-base-sum-gazeta | 32.3 | 14.5 | 27.9 | 39.6 | 11.5 |
|
67 |
+
|
68 |
+
Predicting all summaries:
|
69 |
+
```python
|
70 |
+
import json
|
71 |
+
import torch
|
72 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
73 |
+
from datasets import load_dataset
|
74 |
+
|
75 |
+
|
76 |
+
def gen_batch(inputs, batch_size):
|
77 |
+
batch_start = 0
|
78 |
+
while batch_start < len(inputs):
|
79 |
+
yield inputs[batch_start: batch_start + batch_size]
|
80 |
+
batch_start += batch_size
|
81 |
+
|
82 |
+
|
83 |
+
def predict(
|
84 |
+
model_name,
|
85 |
+
input_records,
|
86 |
+
output_file,
|
87 |
+
max_source_tokens_count=400,
|
88 |
+
max_target_tokens_count=200,
|
89 |
+
batch_size=16
|
90 |
+
):
|
91 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
92 |
+
|
93 |
+
tokenizer = MBartTokenizer.from_pretrained(model_name)
|
94 |
+
model = MBartForConditionalGeneration.from_pretrained(model_name).to(device)
|
95 |
+
|
96 |
+
predictions = []
|
97 |
+
for batch in gen_batch(input_records, batch_size):
|
98 |
+
texts = [r["text"] for r in batch]
|
99 |
+
input_ids = tokenizer(
|
100 |
+
texts,
|
101 |
+
add_special_tokens=True,
|
102 |
+
max_length=max_source_tokens_count,
|
103 |
+
padding="max_length",
|
104 |
+
truncation=True,
|
105 |
+
return_tensors="pt"
|
106 |
+
)["input_ids"].to(device)
|
107 |
+
|
108 |
+
output_ids = model.generate(
|
109 |
+
input_ids=input_ids,
|
110 |
+
max_length=max_target_tokens_count,
|
111 |
+
no_repeat_ngram_size=3,
|
112 |
+
num_beams=5,
|
113 |
+
early_stopping=True
|
114 |
+
)
|
115 |
+
summaries = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
116 |
+
for s in summaries:
|
117 |
+
print(s)
|
118 |
+
predictions.extend(summaries)
|
119 |
+
with open(output_file, "w") as w:
|
120 |
+
for p in predictions:
|
121 |
+
w.write(p.strip().replace("\n", " ") + "\n")
|
122 |
+
|
123 |
+
gazeta_test = load_dataset('IlyaGusev/gazeta', script_version="v1.0")["test"]
|
124 |
+
predict("IlyaGusev/mbart_ru_sum_gazeta", gazeta_test["test"], "t5_predictions.txt")
|
125 |
+
```
|
126 |
+
|
127 |
+
Evaluation: https://github.com/IlyaGusev/summarus/blob/master/evaluate.py
|
128 |
+
|
129 |
+
Flags: --language ru --tokenize-after --lower
|