IlluminatiPudding
commited on
Commit
•
e4b81aa
1
Parent(s):
b77cd8f
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlaceDense-v3.zip +3 -0
- a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlaceDense-v3/data +102 -0
- a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/policy.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlaceDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlaceDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlaceDense-v3
|
16 |
+
type: PandaPickAndPlaceDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlaceDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlaceDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlaceDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c8498ba8ca21a9cf3ab04bb69f87fc394c94e61d438685390df443370dda4d8
|
3 |
+
size 2252728
|
a2c-PandaPickAndPlaceDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlaceDense-v3/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c4ae2b43a30>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c4ae2b3f800>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"net_arch": [
|
16 |
+
256,
|
17 |
+
256,
|
18 |
+
256
|
19 |
+
],
|
20 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
21 |
+
"optimizer_kwargs": {
|
22 |
+
"alpha": 0.99,
|
23 |
+
"eps": 1e-05,
|
24 |
+
"weight_decay": 0
|
25 |
+
}
|
26 |
+
},
|
27 |
+
"num_timesteps": 1000000,
|
28 |
+
"_total_timesteps": 1000000,
|
29 |
+
"_num_timesteps_at_start": 0,
|
30 |
+
"seed": null,
|
31 |
+
"action_noise": null,
|
32 |
+
"start_time": 1700046860301968250,
|
33 |
+
"learning_rate": 0.001,
|
34 |
+
"tensorboard_log": null,
|
35 |
+
"_last_obs": {
|
36 |
+
":type:": "<class 'collections.OrderedDict'>",
|
37 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGQWGvQxt9D6EGTg+e7g9v5XbsD6hGTg+Kow9vyuhob7bGTg+cEDQvglxcL8+Gjg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4JSZvtOwur+vYou/riiTP3tajD9wSVC/OYQqvzBifL+uphA/bkgBvwq1xj+vYou/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACEa3k/J5U2v5agKb9f/Oc+QL9CvyeWlz1lNIE/GQWGvQxt9D6EGTg+ravgvJ7sDLziYNu8pMtAPdiAxTtCqZ89X+BHvKEhcLweoRO9JxQkP+c6Ab4tDie/Z8odwPIymD87W0U+1c5qv3u4Pb+V27A+oRk4Pm+o4Lx5Ag28Q33bvOjRQD2lqcU7JqSfPbdHSLxWcW+8GaETvaeuYz+L85y/Vu0jv7IzOj7xU1m+UMdiPaI1gT8qjD2/K6GhvtsZOD4ceeC8150PvLl34LzCY0E9A+C1O1Fgnz3VAzW8qipTvC8MFb1MZ18/Ce6fvxjlI7/McUE++aJIvgN7Yj2YNYE/cEDQvglxcL8+Gjg+1HTgvDL6DLzzz9u8OyFAPVhQvTtSqZ89Cd9HvNkjcLw9fxS9lGgOSwRLE4aUaBJ0lFKUdS4=",
|
38 |
+
"achieved_goal": "[[-0.06543941 0.47739446 0.17978483]\n [-0.7410962 0.34542528 0.17978527]\n [-0.74042 -0.31568274 0.17978613]\n [-0.40674162 -0.9392248 0.1797876 ]]",
|
39 |
+
"desired_goal": "[[-0.29996395 -1.4585212 -1.0889491 ]\n [ 1.149679 1.0965112 -0.81362057]\n [-0.66608006 -0.9858732 0.56504333]\n [-0.50501144 1.5523999 -1.0889491 ]]",
|
40 |
+
"observation": "[[ 0.9742968 -0.7132134 -0.6626066 0.4530973 -0.76073074 0.07401686\n 1.0094115 -0.06543941 0.47739446 0.17978483 -0.02742561 -0.00860134\n -0.0267796 0.04706921 0.00602732 0.07795955 -0.01219949 -0.01465646\n -0.03604233]\n [ 0.6409325 -0.12620126 -0.65256006 -2.4654787 1.1890547 0.19273083\n -0.9172185 -0.7410962 0.34542528 0.17978527 -0.02742407 -0.00860655\n -0.02679313 0.04707518 0.00603219 0.07794981 -0.01222413 -0.01461442\n -0.03604231]\n [ 0.88938373 -1.2261823 -0.6403402 0.18183783 -0.21223427 0.05536586\n 1.0094492 -0.74042 -0.31568274 0.17978613 -0.0274015 -0.00876566\n -0.02740084 0.04721428 0.00555039 0.07782043 -0.01104828 -0.01288859\n -0.03638857]\n [ 0.87266994 -1.2494518 -0.64021444 0.18891066 -0.19593419 0.05529309\n 1.009448 -0.40674162 -0.9392248 0.1797876 -0.02739946 -0.00860457\n -0.02683256 0.04690669 0.0057774 0.07795967 -0.01219917 -0.01465698\n -0.03625416]]"
|
41 |
+
},
|
42 |
+
"_last_episode_starts": {
|
43 |
+
":type:": "<class 'numpy.ndarray'>",
|
44 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
45 |
+
},
|
46 |
+
"_last_original_obs": {
|
47 |
+
":type:": "<class 'collections.OrderedDict'>",
|
48 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAag9kPXRBKb0K16M8904IvkXKRzwK16M8jUH6OKhDV70K16M8RCjCvb8CF74K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHWvCvWgI57wK16M8qKR0vY2B9r3HqaY8FkDdOtCwYb2kVn89AjYsPUyMDD4K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAag9kPXRBKb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPdOCL5Fykc8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACNQfo4qENXvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAARCjCvb8CF74K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
49 |
+
"achieved_goal": "[[ 5.5678762e-02 -4.1322187e-02 2.0000000e-02]\n [-1.3311373e-01 1.2194221e-02 2.0000000e-02]\n [ 1.1933139e-04 -5.2554756e-02 2.0000000e-02]\n [-9.4803363e-02 -1.4747141e-01 2.0000000e-02]]",
|
50 |
+
"desired_goal": "[[-0.09493086 -0.02820225 0.02 ]\n [-0.05972734 -0.12036429 0.02034463]\n [ 0.00168801 -0.05510026 0.06233849]\n [ 0.04204369 0.13725394 0.02 ]]",
|
51 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.5678762e-02\n -4.1322187e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3311373e-01\n 1.2194221e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1933139e-04\n -5.2554756e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.4803363e-02\n -1.4747141e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
52 |
+
},
|
53 |
+
"_episode_num": 0,
|
54 |
+
"use_sde": false,
|
55 |
+
"sde_sample_freq": -1,
|
56 |
+
"_current_progress_remaining": 0.0,
|
57 |
+
"_stats_window_size": 100,
|
58 |
+
"ep_info_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCpnd2xIJ7eMAWyUSzKMAXSUR0CwG5QNsnAqdX2UKGgGR8AuCTL4etCBaAdLMmgIR0CwG7RYzSCwdX2UKGgGR8Apnr1M/QjVaAdLMmgIR0CwHBMxfv4NdX2UKGgGR8Abb+dbxEv1aAdLMmgIR0CwHBHvQWvbdX2UKGgGR8AWJOtW+49YaAdLMmgIR0CwHD4nrpqzdX2UKGgGR8BJEm9YfW+XaAdLMmgIR0CwHF6UNayKdX2UKGgGR8BBRNlAeJYUaAdLMmgIR0CwHMIF3Y+TdX2UKGgGR8Ah/UcXFcY7aAdLMmgIR0CwHL0Pxx1gdX2UKGgGR8BCaWxyGSIQaAdLMmgIR0CwHPfBrN4adX2UKGgGR8AtXo9LYf4iaAdLMmgIR0CwHRfsE7nxdX2UKGgGR8ATt0p3HJcPaAdLMmgIR0CwHXsd92HMdX2UKGgGR8AngVxCIDYAaAdLMmgIR0CwHXnYHxBmdX2UKGgGR8AjNZxrBTGYaAdLMmgIR0CwHbHVLBbfdX2UKGgGR8BA1ib2Dg62aAdLMmgIR0CwHdIOYplSdX2UKGgGR7+WtuDSPU8WaAdLAWgIR0CwHbV+Vkc0dX2UKGgGR8Amy1E3Kji5aAdLMmgIR0CwHjszMzMzdX2UKGgGR8AgT59E1EVnaAdLMmgIR0CwHjgTZg5SdX2UKGgGR8AgPAB1cMVlaAdLMmgIR0CwHoWWldkbdX2UKGgGR8AgqmfGuLaVaAdLMmgIR0CwHmj/uLJkdX2UKGgGR8AoEi8FpwjuaAdLMmgIR0CwHuUdNnGsdX2UKGgGR8Altuk1uR9xaAdLMmgIR0CwHucVgx8EdX2UKGgGR8A21zSCvovBaAdLMmgIR0CwH0gYLsrvdX2UKGgGR8BB2DLbHp8naAdLMmgIR0CwHyv4qPOqdX2UKGgGR8AX/9kz41xbaAdLMmgIR0CwH66f4AS4dX2UKGgGR8Ais/cnE2pAaAdLMmgIR0CwH6s/t6X0dX2UKGgGR8Ap5S6UaAFxaAdLMmgIR0CwIAlFQVKxdX2UKGgGR8AxZGG21D0EaAdLMmgIR0CwH+2+9Jz1dX2UKGgGR8AwLcp9ZzPsaAdLMmgIR0CwIG/9gnc+dX2UKGgGR8Az7uEmICU5aAdLMmgIR0CwIHGKqGUOdX2UKGgGR8BA3orvsqrjaAdLMmgIR0CwIMHAuZkTdX2UKGgGR8Aqxl/YraufaAdLMmgIR0CwIKUyxiXqdX2UKGgGR8AnOndfsu3+aAdLMmgIR0CwISWUr08OdX2UKGgGR8AnTzz3AVO9aAdLMmgIR0CwIR8yeqaPdX2UKGgGR8ArFDjR2KVIaAdLMmgIR0CwIZjJuEVWdX2UKGgGR8AdVzT4L1EmaAdLMmgIR0CwIXzYVZcLdX2UKGgGR8AiG5H3Dej3aAdLMmgIR0CwIhFy3kPudX2UKGgGR8AnUDvmYBvKaAdLMmgIR0CwIhl6eGwidX2UKGgGR8AXvO2RaHKwaAdLMmgIR0CwIqdxIatLdX2UKGgGR8AldPWxyGSIaAdLMmgIR0CwIouSB9ThdX2UKGgGR7+ZB9kSVW0aaAdLAWgIR0CwIq1tsN2DdX2UKGgGR8Aitf0mMOwxaAdLMmgIR0CwIyE+PikwdX2UKGgGR7+lwPy08eS0aAdLAWgIR0CwIya7ZnL8dX2UKGgGR8ArGJswco6TaAdLMmgIR0CwIyivX9R8dX2UKGgGR8Ab+oESuhboaAdLMmgIR0CwI6BNh3JQdX2UKGgGR8AoUKXOW0JGaAdLMmgIR0CwI8I3m3fAdX2UKGgGR8AavWSU1Q67aAdLMmgIR0CwJEXYlIEsdX2UKGgGR8AkeaoddVvNaAdLMmgIR0CwJFV6AvtddX2UKGgGR8AYJj5KvmozaAdLMmgIR0CwJOEBnzxxdX2UKGgGR8AXoDIRywOfaAdLMmgIR0CwJQMYl6Z6dX2UKGgGR8AgJfqoqCpWaAdLMmgIR0CwJX0/8l5XdX2UKGgGR8AcSoaUA1ejaAdLMmgIR0CwJX+54GD+dX2UKGgGR8AxF3hGYrrgaAdLMmgIR0CwJfXiiqQzdX2UKGgGR8AYTXZoPCl8aAdLMmgIR0CwJhjbeuV5dX2UKGgGR8Ap7ihnJ1aGaAdLMmgIR0CwJqS1eBxxdX2UKGgGR8A60R+z+m3waAdLMmgIR0CwJrZXp4bCdX2UKGgGR8AnwHObAk9maAdLMmgIR0CwJwoyGi5/dX2UKGgGR8Aglkwvg3tKaAdLMmgIR0CwJyrtJFspdX2UKGgGR8AlVU6xPfsNaAdLMmgIR0CwJ48uanaWdX2UKGgGR7/jEY4yXUpeaAdLBmgIR0CwJ6U3juKGdX2UKGgGR8AiilN1yNn5aAdLMmgIR0CwJ4hWDHwPdX2UKGgGR8AaeoCMglniaAdLMmgIR0CwJ73d9Dx9dX2UKGgGR8AadX5nDiwTaAdLMmgIR0CwJ94NmUW3dX2UKGgGR8AgP9Vmz0HyaAdLMmgIR0CwKFVXeWOZdX2UKGgGR8AkdDCxeLNwaAdLMmgIR0CwKDh6F/QTdX2UKGgGR8Al926ClJpWaAdLMmgIR0CwKG54SpR5dX2UKGgGR8AldULlV94NaAdLMmgIR0CwKI6Zc9nsdX2UKGgGR8AqhPIn0CiiaAdLMmgIR0CwKQQG0NSZdX2UKGgGR8Aqn7qptJnQaAdLMmgIR0CwKOcJ6Y3OdX2UKGgGR8Ad0yIpH7P6aAdLMmgIR0CwKRGZ3LV4dX2UKGgGR8A+syO7xusLaAdLMmgIR0CwKTHHmzSkdX2UKGgGR8BCWZr56+nJaAdLMmgIR0CwKbacZtN0dX2UKGgGR8Aku8IRh+fAaAdLMmgIR0CwKZnFDOTrdX2UKGgGR8Arzu+AVfu1aAdLMmgIR0CwKd1A/s3RdX2UKGgGR8Ant76YVqN7aAdLMmgIR0CwKf2fwqiHdX2UKGgGR8AyVSuhbnoxaAdLMmgIR0CwKnd9YwIudX2UKGgGR8Am7i9Zid8RaAdLMmgIR0CwKlqmKqGUdX2UKGgGR8AtcDFId2gWaAdLMmgIR0CwKpgN0/4ZdX2UKGgGR8AXNs41gpjMaAdLMmgIR0CwKrgv114gdX2UKGgGR8Ah1AgxJul5aAdLMmgIR0CwKy/NVzZIdX2UKGgGR8A+lezUqhDgaAdLMmgIR0CwKxLgKnejdX2UKGgGR8AjPZ9NN8E3aAdLMmgIR0CwK0WLDQ7cdX2UKGgGR8AnS1pCa7VbaAdLMmgIR0CwK2XVTaTPdX2UKGgGR8AqBSP2f02+aAdLMmgIR0CwK+Ri5NGmdX2UKGgGR8AnhjI7vG6xaAdLMmgIR0CwK8eYplSTdX2UKGgGR8Axnhje9Ba+aAdLMmgIR0CwLAVDBuXNdX2UKGgGR8Aj6aef7JnyaAdLMmgIR0CwLCV2NedDdX2UKGgGR8AkPpKzzErHaAdLMmgIR0CwLJ/lp48mdX2UKGgGR8A3ueOGTLW7aAdLMmgIR0CwLILKvFFVdX2UKGgGR8AXkOqebutwaAdLMmgIR0CwLLTImw7ldX2UKGgGR8AI2/nGKhtcaAdLMmgIR0CwLNUQPI4mdX2UKGgGR8AsOjMV1wHaaAdLMmgIR0CwLU7D/EOzdX2UKGgGR8AdGTMaCL/CaAdLMmgIR0CwLTH/T9bYdX2UKGgGR8ASuXjU/fO2aAdLMmgIR0CwLWgiu+yrdX2UKGgGR8AqF8uzyBkJaAdLMmgIR0CwLYlzMibEdX2UKGgGR8AdWXu3MINWaAdLMmgIR0CwLgNmHxjKdX2UKGgGR8AWtHc1wYLtaAdLMmgIR0CwLeaGxlg/dX2UKGgGR8AoGnDziCJ5aAdLMmgIR0CwLhneFcptdX2UKGgGR8Atbo/zJ6ppaAdLMmgIR0CwLjrd30PIdX2UKGgGR8Age2F36hxpaAdLMmgIR0CwLrwZ88cNdX2UKGgGR8AjJLidat9yaAdLMmgIR0CwLp+Q+2VndWUu"
|
61 |
+
},
|
62 |
+
"ep_success_buffer": {
|
63 |
+
":type:": "<class 'collections.deque'>",
|
64 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
65 |
+
},
|
66 |
+
"_n_updates": 12500,
|
67 |
+
"n_steps": 20,
|
68 |
+
"gamma": 0.95,
|
69 |
+
"gae_lambda": 0.95,
|
70 |
+
"ent_coef": 0.01,
|
71 |
+
"vf_coef": 0.5,
|
72 |
+
"max_grad_norm": 0.5,
|
73 |
+
"normalize_advantage": true,
|
74 |
+
"observation_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
76 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
77 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
78 |
+
"_shape": null,
|
79 |
+
"dtype": null,
|
80 |
+
"_np_random": null
|
81 |
+
},
|
82 |
+
"action_space": {
|
83 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
84 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
85 |
+
"dtype": "float32",
|
86 |
+
"bounded_below": "[ True True True True]",
|
87 |
+
"bounded_above": "[ True True True True]",
|
88 |
+
"_shape": [
|
89 |
+
4
|
90 |
+
],
|
91 |
+
"low": "[-1. -1. -1. -1.]",
|
92 |
+
"high": "[1. 1. 1. 1.]",
|
93 |
+
"low_repr": "-1.0",
|
94 |
+
"high_repr": "1.0",
|
95 |
+
"_np_random": null
|
96 |
+
},
|
97 |
+
"n_envs": 4,
|
98 |
+
"lr_schedule": {
|
99 |
+
":type:": "<class 'function'>",
|
100 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
101 |
+
}
|
102 |
+
}
|
a2c-PandaPickAndPlaceDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:159217488f54e287261b91b6bf036ddc88b81f434667c920da30db855481bb4a
|
3 |
+
size 1116195
|
a2c-PandaPickAndPlaceDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a58ab9340feac0afa78e5b108a93f62180ebadb6cb97d7dafb9a6fdbf4b8e45e
|
3 |
+
size 1117667
|
a2c-PandaPickAndPlaceDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaPickAndPlaceDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c4ae2b43a30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c4ae2b3f800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVmQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAU0AAWWMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [256, 256, 256], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700046860301968250, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGQWGvQxt9D6EGTg+e7g9v5XbsD6hGTg+Kow9vyuhob7bGTg+cEDQvglxcL8+Gjg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4JSZvtOwur+vYou/riiTP3tajD9wSVC/OYQqvzBifL+uphA/bkgBvwq1xj+vYou/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACEa3k/J5U2v5agKb9f/Oc+QL9CvyeWlz1lNIE/GQWGvQxt9D6EGTg+ravgvJ7sDLziYNu8pMtAPdiAxTtCqZ89X+BHvKEhcLweoRO9JxQkP+c6Ab4tDie/Z8odwPIymD87W0U+1c5qv3u4Pb+V27A+oRk4Pm+o4Lx5Ag28Q33bvOjRQD2lqcU7JqSfPbdHSLxWcW+8GaETvaeuYz+L85y/Vu0jv7IzOj7xU1m+UMdiPaI1gT8qjD2/K6GhvtsZOD4ceeC8150PvLl34LzCY0E9A+C1O1Fgnz3VAzW8qipTvC8MFb1MZ18/Ce6fvxjlI7/McUE++aJIvgN7Yj2YNYE/cEDQvglxcL8+Gjg+1HTgvDL6DLzzz9u8OyFAPVhQvTtSqZ89Cd9HvNkjcLw9fxS9lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.06543941 0.47739446 0.17978483]\n [-0.7410962 0.34542528 0.17978527]\n [-0.74042 -0.31568274 0.17978613]\n [-0.40674162 -0.9392248 0.1797876 ]]", "desired_goal": "[[-0.29996395 -1.4585212 -1.0889491 ]\n [ 1.149679 1.0965112 -0.81362057]\n [-0.66608006 -0.9858732 0.56504333]\n [-0.50501144 1.5523999 -1.0889491 ]]", "observation": "[[ 0.9742968 -0.7132134 -0.6626066 0.4530973 -0.76073074 0.07401686\n 1.0094115 -0.06543941 0.47739446 0.17978483 -0.02742561 -0.00860134\n -0.0267796 0.04706921 0.00602732 0.07795955 -0.01219949 -0.01465646\n -0.03604233]\n [ 0.6409325 -0.12620126 -0.65256006 -2.4654787 1.1890547 0.19273083\n -0.9172185 -0.7410962 0.34542528 0.17978527 -0.02742407 -0.00860655\n -0.02679313 0.04707518 0.00603219 0.07794981 -0.01222413 -0.01461442\n -0.03604231]\n [ 0.88938373 -1.2261823 -0.6403402 0.18183783 -0.21223427 0.05536586\n 1.0094492 -0.74042 -0.31568274 0.17978613 -0.0274015 -0.00876566\n -0.02740084 0.04721428 0.00555039 0.07782043 -0.01104828 -0.01288859\n -0.03638857]\n [ 0.87266994 -1.2494518 -0.64021444 0.18891066 -0.19593419 0.05529309\n 1.009448 -0.40674162 -0.9392248 0.1797876 -0.02739946 -0.00860457\n -0.02683256 0.04690669 0.0057774 0.07795967 -0.01219917 -0.01465698\n -0.03625416]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAag9kPXRBKb0K16M8904IvkXKRzwK16M8jUH6OKhDV70K16M8RCjCvb8CF74K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHWvCvWgI57wK16M8qKR0vY2B9r3HqaY8FkDdOtCwYb2kVn89AjYsPUyMDD4K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAag9kPXRBKb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPdOCL5Fykc8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACNQfo4qENXvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAARCjCvb8CF74K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 5.5678762e-02 -4.1322187e-02 2.0000000e-02]\n [-1.3311373e-01 1.2194221e-02 2.0000000e-02]\n [ 1.1933139e-04 -5.2554756e-02 2.0000000e-02]\n [-9.4803363e-02 -1.4747141e-01 2.0000000e-02]]", "desired_goal": "[[-0.09493086 -0.02820225 0.02 ]\n [-0.05972734 -0.12036429 0.02034463]\n [ 0.00168801 -0.05510026 0.06233849]\n [ 0.04204369 0.13725394 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.5678762e-02\n -4.1322187e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3311373e-01\n 1.2194221e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1933139e-04\n -5.2554756e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.4803363e-02\n -1.4747141e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCpnd2xIJ7eMAWyUSzKMAXSUR0CwG5QNsnAqdX2UKGgGR8AuCTL4etCBaAdLMmgIR0CwG7RYzSCwdX2UKGgGR8Apnr1M/QjVaAdLMmgIR0CwHBMxfv4NdX2UKGgGR8Abb+dbxEv1aAdLMmgIR0CwHBHvQWvbdX2UKGgGR8AWJOtW+49YaAdLMmgIR0CwHD4nrpqzdX2UKGgGR8BJEm9YfW+XaAdLMmgIR0CwHF6UNayKdX2UKGgGR8BBRNlAeJYUaAdLMmgIR0CwHMIF3Y+TdX2UKGgGR8Ah/UcXFcY7aAdLMmgIR0CwHL0Pxx1gdX2UKGgGR8BCaWxyGSIQaAdLMmgIR0CwHPfBrN4adX2UKGgGR8AtXo9LYf4iaAdLMmgIR0CwHRfsE7nxdX2UKGgGR8ATt0p3HJcPaAdLMmgIR0CwHXsd92HMdX2UKGgGR8AngVxCIDYAaAdLMmgIR0CwHXnYHxBmdX2UKGgGR8AjNZxrBTGYaAdLMmgIR0CwHbHVLBbfdX2UKGgGR8BA1ib2Dg62aAdLMmgIR0CwHdIOYplSdX2UKGgGR7+WtuDSPU8WaAdLAWgIR0CwHbV+Vkc0dX2UKGgGR8Amy1E3Kji5aAdLMmgIR0CwHjszMzMzdX2UKGgGR8AgT59E1EVnaAdLMmgIR0CwHjgTZg5SdX2UKGgGR8AgPAB1cMVlaAdLMmgIR0CwHoWWldkbdX2UKGgGR8AgqmfGuLaVaAdLMmgIR0CwHmj/uLJkdX2UKGgGR8AoEi8FpwjuaAdLMmgIR0CwHuUdNnGsdX2UKGgGR8Altuk1uR9xaAdLMmgIR0CwHucVgx8EdX2UKGgGR8A21zSCvovBaAdLMmgIR0CwH0gYLsrvdX2UKGgGR8BB2DLbHp8naAdLMmgIR0CwHyv4qPOqdX2UKGgGR8AX/9kz41xbaAdLMmgIR0CwH66f4AS4dX2UKGgGR8Ais/cnE2pAaAdLMmgIR0CwH6s/t6X0dX2UKGgGR8Ap5S6UaAFxaAdLMmgIR0CwIAlFQVKxdX2UKGgGR8AxZGG21D0EaAdLMmgIR0CwH+2+9Jz1dX2UKGgGR8AwLcp9ZzPsaAdLMmgIR0CwIG/9gnc+dX2UKGgGR8Az7uEmICU5aAdLMmgIR0CwIHGKqGUOdX2UKGgGR8BA3orvsqrjaAdLMmgIR0CwIMHAuZkTdX2UKGgGR8Aqxl/YraufaAdLMmgIR0CwIKUyxiXqdX2UKGgGR8AnOndfsu3+aAdLMmgIR0CwISWUr08OdX2UKGgGR8AnTzz3AVO9aAdLMmgIR0CwIR8yeqaPdX2UKGgGR8ArFDjR2KVIaAdLMmgIR0CwIZjJuEVWdX2UKGgGR8AdVzT4L1EmaAdLMmgIR0CwIXzYVZcLdX2UKGgGR8AiG5H3Dej3aAdLMmgIR0CwIhFy3kPudX2UKGgGR8AnUDvmYBvKaAdLMmgIR0CwIhl6eGwidX2UKGgGR8AXvO2RaHKwaAdLMmgIR0CwIqdxIatLdX2UKGgGR8AldPWxyGSIaAdLMmgIR0CwIouSB9ThdX2UKGgGR7+ZB9kSVW0aaAdLAWgIR0CwIq1tsN2DdX2UKGgGR8Aitf0mMOwxaAdLMmgIR0CwIyE+PikwdX2UKGgGR7+lwPy08eS0aAdLAWgIR0CwIya7ZnL8dX2UKGgGR8ArGJswco6TaAdLMmgIR0CwIyivX9R8dX2UKGgGR8Ab+oESuhboaAdLMmgIR0CwI6BNh3JQdX2UKGgGR8AoUKXOW0JGaAdLMmgIR0CwI8I3m3fAdX2UKGgGR8AavWSU1Q67aAdLMmgIR0CwJEXYlIEsdX2UKGgGR8AkeaoddVvNaAdLMmgIR0CwJFV6AvtddX2UKGgGR8AYJj5KvmozaAdLMmgIR0CwJOEBnzxxdX2UKGgGR8AXoDIRywOfaAdLMmgIR0CwJQMYl6Z6dX2UKGgGR8AgJfqoqCpWaAdLMmgIR0CwJX0/8l5XdX2UKGgGR8AcSoaUA1ejaAdLMmgIR0CwJX+54GD+dX2UKGgGR8AxF3hGYrrgaAdLMmgIR0CwJfXiiqQzdX2UKGgGR8AYTXZoPCl8aAdLMmgIR0CwJhjbeuV5dX2UKGgGR8Ap7ihnJ1aGaAdLMmgIR0CwJqS1eBxxdX2UKGgGR8A60R+z+m3waAdLMmgIR0CwJrZXp4bCdX2UKGgGR8AnwHObAk9maAdLMmgIR0CwJwoyGi5/dX2UKGgGR8Aglkwvg3tKaAdLMmgIR0CwJyrtJFspdX2UKGgGR8AlVU6xPfsNaAdLMmgIR0CwJ48uanaWdX2UKGgGR7/jEY4yXUpeaAdLBmgIR0CwJ6U3juKGdX2UKGgGR8AiilN1yNn5aAdLMmgIR0CwJ4hWDHwPdX2UKGgGR8AaeoCMglniaAdLMmgIR0CwJ73d9Dx9dX2UKGgGR8AadX5nDiwTaAdLMmgIR0CwJ94NmUW3dX2UKGgGR8AgP9Vmz0HyaAdLMmgIR0CwKFVXeWOZdX2UKGgGR8AkdDCxeLNwaAdLMmgIR0CwKDh6F/QTdX2UKGgGR8Al926ClJpWaAdLMmgIR0CwKG54SpR5dX2UKGgGR8AldULlV94NaAdLMmgIR0CwKI6Zc9nsdX2UKGgGR8AqhPIn0CiiaAdLMmgIR0CwKQQG0NSZdX2UKGgGR8Aqn7qptJnQaAdLMmgIR0CwKOcJ6Y3OdX2UKGgGR8Ad0yIpH7P6aAdLMmgIR0CwKRGZ3LV4dX2UKGgGR8A+syO7xusLaAdLMmgIR0CwKTHHmzSkdX2UKGgGR8BCWZr56+nJaAdLMmgIR0CwKbacZtN0dX2UKGgGR8Aku8IRh+fAaAdLMmgIR0CwKZnFDOTrdX2UKGgGR8Arzu+AVfu1aAdLMmgIR0CwKd1A/s3RdX2UKGgGR8Ant76YVqN7aAdLMmgIR0CwKf2fwqiHdX2UKGgGR8AyVSuhbnoxaAdLMmgIR0CwKnd9YwIudX2UKGgGR8Am7i9Zid8RaAdLMmgIR0CwKlqmKqGUdX2UKGgGR8AtcDFId2gWaAdLMmgIR0CwKpgN0/4ZdX2UKGgGR8AXNs41gpjMaAdLMmgIR0CwKrgv114gdX2UKGgGR8Ah1AgxJul5aAdLMmgIR0CwKy/NVzZIdX2UKGgGR8A+lezUqhDgaAdLMmgIR0CwKxLgKnejdX2UKGgGR8AjPZ9NN8E3aAdLMmgIR0CwK0WLDQ7cdX2UKGgGR8AnS1pCa7VbaAdLMmgIR0CwK2XVTaTPdX2UKGgGR8AqBSP2f02+aAdLMmgIR0CwK+Ri5NGmdX2UKGgGR8AnhjI7vG6xaAdLMmgIR0CwK8eYplSTdX2UKGgGR8Axnhje9Ba+aAdLMmgIR0CwLAVDBuXNdX2UKGgGR8Aj6aef7JnyaAdLMmgIR0CwLCV2NedDdX2UKGgGR8AkPpKzzErHaAdLMmgIR0CwLJ/lp48mdX2UKGgGR8A3ueOGTLW7aAdLMmgIR0CwLILKvFFVdX2UKGgGR8AXkOqebutwaAdLMmgIR0CwLLTImw7ldX2UKGgGR8AI2/nGKhtcaAdLMmgIR0CwLNUQPI4mdX2UKGgGR8AsOjMV1wHaaAdLMmgIR0CwLU7D/EOzdX2UKGgGR8AdGTMaCL/CaAdLMmgIR0CwLTH/T9bYdX2UKGgGR8ASuXjU/fO2aAdLMmgIR0CwLWgiu+yrdX2UKGgGR8AqF8uzyBkJaAdLMmgIR0CwLYlzMibEdX2UKGgGR8AdWXu3MINWaAdLMmgIR0CwLgNmHxjKdX2UKGgGR8AWtHc1wYLtaAdLMmgIR0CwLeaGxlg/dX2UKGgGR8AoGnDziCJ5aAdLMmgIR0CwLhneFcptdX2UKGgGR8Atbo/zJ6ppaAdLMmgIR0CwLjrd30PIdX2UKGgGR8Age2F36hxpaAdLMmgIR0CwLrwZ88cNdX2UKGgGR8AjJLidat9yaAdLMmgIR0CwLp+Q+2VndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 20, "gamma": 0.95, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (880 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-15T12:23:28.945661"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa7244c999ba763ae2bcf97992c7abc198dd284e8d64c5f1f8288cdbeb12711c
|
3 |
+
size 3013
|