IlluminatiPudding commited on
Commit
da23800
1 Parent(s): b835272

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a03482b7ffdec156f048333860690201a519e8cdc973c7cda4e161cd40722b70
3
+ size 124394
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c04346f31c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c04346e78c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699948583887429625,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcR4qvquuNju1ikI+fukjv+8Fyz7RiEI+OmrUvivWab6FiUI+ya7dPjnSKL/yr0I+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgg5XP2yVZz9p/nI/RDogvwJXfT9JAmi//B9TP10UAL/raIy/n98Mv8GBk79S7hY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACaWh4/tRgZP53qTL/NBxi/+6WsP/5HzT0DIYm/cR4qvquuNju1ikI+X/uTvHoRiztzgHE/e0RaPd4tKTxmu7k9zHJLu1dDp7wzgYq44nm5PmdGB7/q7Ya+y13vv/oNxz88TPG/YeNav37pI7/vBcs+0YhCPpZwk7wajI07jA4KvNIrWz1A1SU8BLq5PZMrTLvqKqe8PRGBOYmLy7+OVS+/rNwYvzOOzL9NFM++nIqAPubfWr86atS+K9ZpvoWJQj4ZSJS8qeaMO1/7CrwawVo9+LUrPAS6uT2tK0y73SqnvFGBCDkyJSc/fPyBPYS2rT+2FRs+KAd/PAyhxT1Y6Yy/ya7dPjnSKL/yr0I+ZPuTvOT+iju1ARy8d0ZaPZo1KTwEurk92itMu+Iqp7wvf4q4lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.16613175 0.00278751 0.18998225]\n [-0.64028156 0.39652964 0.18997504]\n [-0.41487294 -0.22835605 0.18997772]\n [ 0.43297413 -0.65945774 0.1901243 ]]",
34
+ "desired_goal": "[[ 0.8400651 0.90462375 0.9491945 ]\n [-0.62588906 0.9896089 -0.90628487]\n [ 0.8247068 -0.5003107 -1.0969518 ]\n [-0.5502872 -1.1523973 0.1473935 ]]",
35
+ "observation": "[[ 6.1856997e-01 5.9803325e-01 -8.0045491e-01 -5.9386903e-01\n 1.3488153e+00 1.0023497e-01 -1.0713199e+00 -1.6613175e-01\n 2.7875106e-03 1.8998225e-01 -1.8064199e-02 4.2440267e-03\n 9.4336623e-01 5.3287964e-02 1.0325877e-02 9.0689465e-02\n -3.1043766e-03 -2.0417852e-02 -6.6044180e-05]\n [ 3.6225802e-01 -5.2841800e-01 -2.6353389e-01 -1.8700498e+00\n 1.5551140e+00 -1.8851390e+00 -8.5503203e-01 -6.4028156e-01\n 3.9652964e-01 1.8997504e-01 -1.7998021e-02 4.3196799e-03\n -8.4263198e-03 5.3508587e-02 1.0121644e-02 9.0686828e-02\n -3.1153902e-03 -2.0406205e-02 2.4617641e-04]\n [-1.5901958e+00 -6.8489921e-01 -5.9711719e-01 -1.5980896e+00\n -4.0445176e-01 2.5105751e-01 -8.5497892e-01 -4.1487294e-01\n -2.2835605e-01 1.8997772e-01 -1.8100785e-02 4.2999578e-03\n -8.4827831e-03 5.3406812e-02 1.0480396e-02 9.0686828e-02\n -3.1153962e-03 -2.0406181e-02 1.3018145e-04]\n [ 6.5291131e-01 6.3469857e-02 1.3571324e+00 1.5145001e-01\n 1.5565671e-02 9.6498579e-02 -1.1008711e+00 4.3297413e-01\n -6.5945774e-01 1.9012430e-01 -1.8064208e-02 4.2418111e-03\n -9.5218914e-03 5.3289857e-02 1.0327721e-02 9.0686828e-02\n -3.1154067e-03 -2.0406190e-02 -6.6040426e-05]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASHT7PXLU/T0K16M8FcnGvSJ/mj0K16M8lD0wPC3KZz0K16M8a5mHve8ooLwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzpntPY46uz09l6s9fJCKu79zkTso2Ik956uAvVB04j1XFq89ICf/vGowaj0c4+E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAASHT7PXLU/T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABXJxr0if5o9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACUPTA8LcpnPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAa5mHve8ooLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.12278038 0.12394036 0.02 ]\n [-0.09706322 0.0754378 0.02 ]\n [ 0.01075687 0.05658929 0.02 ]\n [-0.06621059 -0.01955077 0.02 ]]",
45
+ "desired_goal": "[[ 0.11601602 0.09142028 0.08378456]\n [-0.00422865 0.00443885 0.06730682]\n [-0.06282788 0.11057341 0.08549183]\n [-0.03114659 0.05717508 0.11029646]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2278038e-01\n 1.2394036e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.7063221e-02\n 7.5437799e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0756869e-02\n 5.6589294e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.6210590e-02\n -1.9550769e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cma8+qrBCVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbRcXWOIZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbQcyFfzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbMbo8p1BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbXRWtEG8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmbr1GkN4JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbpinHeabdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbkxTS9dvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmboHiWE9MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb8SuIRAbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb5I1UEPldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb0Y6GQCCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb3p22XsxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcL47A+INdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcI8XWOIZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcEGwJPZadX2UKGgGR8AoAAAAAAAAaAdLDWgIR0CmcMtj9XLedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcHwMYuTSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmcIB68g6mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmccHbItDldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcUJvgm7bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmcc35eqrBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcXktuk1udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcrgGSpzcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcjcrqdH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcsA6uGKydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcnIvalDXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc7FeF+NMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmczW3BpHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc78MmWt2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc2jF6zE8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdKd1EE1VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdCiwjdHldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdLNHYpUhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdFo/Z/TcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdZjlgc94dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdRoN/e+FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdaU8eS0TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdVAR02cbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmdo7D/EOzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdhK0lZ5idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdqB0ZFXrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdlQ2l2vCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmd5LOZ9eAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdxjA8B+4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmd6OQhfShdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cmd6johY/3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmd0h1s+FDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeIdSde6adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeApHRTjvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeJjafzz3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeEHc1wYMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeYBKUVzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeP49HMEBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeZGO2iL3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeTrKNhmYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmenlqi48VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmefr08NhFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmeo0PYnOTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmejd0JWvKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cme3Xwb2lEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmevaciGFjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cme4lYEGJOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmezDsD4gzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfG90q6OHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cme/G1pj+adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfIQbuMMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfCbQLNOedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfWVDBuXNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfOf6O5rhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfXbYkE9udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfSGyxA0LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfmCkO7QLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfeSuhbnpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfnVawD/3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmfha1kUbldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf1VJtix3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmftgNwzcidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf2WVNYbLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfxUngHeKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgFQAlv61dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf9RwAEMcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgGV5a/yodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgAoTGo73dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgUjkELYxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgMo2XLNfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgVnIZIhAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgQH27FsIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgkCyhSLqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgcLB0p3HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmglOB19v1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgjXCTEBKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg3bWd3B6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgyFTWGypdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg9TZHuqndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg9XJYDDCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhRY287IUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhL4Qz1sddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhW13dKukdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhVIKtxMndWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 25000,
62
+ "n_steps": 10,
63
+ "gamma": 0.95,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.008,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec9c6bf9d7d117c46404daf4545bd28c45365665dc61d5414b30d3dc3d7ada27
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f93e3ec9dd2e58936d6bfb04b8ddfca0de1e52b8f5153729dbe7d3a655ca31d0
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c04346f31c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c04346e78c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699948583887429625, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcR4qvquuNju1ikI+fukjv+8Fyz7RiEI+OmrUvivWab6FiUI+ya7dPjnSKL/yr0I+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgg5XP2yVZz9p/nI/RDogvwJXfT9JAmi//B9TP10UAL/raIy/n98Mv8GBk79S7hY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACaWh4/tRgZP53qTL/NBxi/+6WsP/5HzT0DIYm/cR4qvquuNju1ikI+X/uTvHoRiztzgHE/e0RaPd4tKTxmu7k9zHJLu1dDp7wzgYq44nm5PmdGB7/q7Ya+y13vv/oNxz88TPG/YeNav37pI7/vBcs+0YhCPpZwk7wajI07jA4KvNIrWz1A1SU8BLq5PZMrTLvqKqe8PRGBOYmLy7+OVS+/rNwYvzOOzL9NFM++nIqAPubfWr86atS+K9ZpvoWJQj4ZSJS8qeaMO1/7CrwawVo9+LUrPAS6uT2tK0y73SqnvFGBCDkyJSc/fPyBPYS2rT+2FRs+KAd/PAyhxT1Y6Yy/ya7dPjnSKL/yr0I+ZPuTvOT+iju1ARy8d0ZaPZo1KTwEurk92itMu+Iqp7wvf4q4lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.16613175 0.00278751 0.18998225]\n [-0.64028156 0.39652964 0.18997504]\n [-0.41487294 -0.22835605 0.18997772]\n [ 0.43297413 -0.65945774 0.1901243 ]]", "desired_goal": "[[ 0.8400651 0.90462375 0.9491945 ]\n [-0.62588906 0.9896089 -0.90628487]\n [ 0.8247068 -0.5003107 -1.0969518 ]\n [-0.5502872 -1.1523973 0.1473935 ]]", "observation": "[[ 6.1856997e-01 5.9803325e-01 -8.0045491e-01 -5.9386903e-01\n 1.3488153e+00 1.0023497e-01 -1.0713199e+00 -1.6613175e-01\n 2.7875106e-03 1.8998225e-01 -1.8064199e-02 4.2440267e-03\n 9.4336623e-01 5.3287964e-02 1.0325877e-02 9.0689465e-02\n -3.1043766e-03 -2.0417852e-02 -6.6044180e-05]\n [ 3.6225802e-01 -5.2841800e-01 -2.6353389e-01 -1.8700498e+00\n 1.5551140e+00 -1.8851390e+00 -8.5503203e-01 -6.4028156e-01\n 3.9652964e-01 1.8997504e-01 -1.7998021e-02 4.3196799e-03\n -8.4263198e-03 5.3508587e-02 1.0121644e-02 9.0686828e-02\n -3.1153902e-03 -2.0406205e-02 2.4617641e-04]\n [-1.5901958e+00 -6.8489921e-01 -5.9711719e-01 -1.5980896e+00\n -4.0445176e-01 2.5105751e-01 -8.5497892e-01 -4.1487294e-01\n -2.2835605e-01 1.8997772e-01 -1.8100785e-02 4.2999578e-03\n -8.4827831e-03 5.3406812e-02 1.0480396e-02 9.0686828e-02\n -3.1153962e-03 -2.0406181e-02 1.3018145e-04]\n [ 6.5291131e-01 6.3469857e-02 1.3571324e+00 1.5145001e-01\n 1.5565671e-02 9.6498579e-02 -1.1008711e+00 4.3297413e-01\n -6.5945774e-01 1.9012430e-01 -1.8064208e-02 4.2418111e-03\n -9.5218914e-03 5.3289857e-02 1.0327721e-02 9.0686828e-02\n -3.1154067e-03 -2.0406190e-02 -6.6040426e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASHT7PXLU/T0K16M8FcnGvSJ/mj0K16M8lD0wPC3KZz0K16M8a5mHve8ooLwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzpntPY46uz09l6s9fJCKu79zkTso2Ik956uAvVB04j1XFq89ICf/vGowaj0c4+E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAASHT7PXLU/T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABXJxr0if5o9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACUPTA8LcpnPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAa5mHve8ooLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.12278038 0.12394036 0.02 ]\n [-0.09706322 0.0754378 0.02 ]\n [ 0.01075687 0.05658929 0.02 ]\n [-0.06621059 -0.01955077 0.02 ]]", "desired_goal": "[[ 0.11601602 0.09142028 0.08378456]\n [-0.00422865 0.00443885 0.06730682]\n [-0.06282788 0.11057341 0.08549183]\n [-0.03114659 0.05717508 0.11029646]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2278038e-01\n 1.2394036e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.7063221e-02\n 7.5437799e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0756869e-02\n 5.6589294e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.6210590e-02\n -1.9550769e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cma8+qrBCVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbRcXWOIZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbQcyFfzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbMbo8p1BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbXRWtEG8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmbr1GkN4JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbpinHeabdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmbkxTS9dvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmboHiWE9MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb8SuIRAbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb5I1UEPldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb0Y6GQCCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmb3p22XsxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcL47A+INdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcI8XWOIZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcEGwJPZadX2UKGgGR8AoAAAAAAAAaAdLDWgIR0CmcMtj9XLedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcHwMYuTSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmcIB68g6mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmccHbItDldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcUJvgm7bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmcc35eqrBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcXktuk1udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcrgGSpzcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcjcrqdH2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcsA6uGKydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmcnIvalDXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc7FeF+NMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmczW3BpHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc78MmWt2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmc2jF6zE8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdKd1EE1VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdCiwjdHldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdLNHYpUhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdFo/Z/TcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdZjlgc94dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdRoN/e+FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdaU8eS0TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdVAR02cbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmdo7D/EOzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdhK0lZ5idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdqB0ZFXrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdlQ2l2vCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmd5LOZ9eAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmdxjA8B+4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmd6OQhfShdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cmd6johY/3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmd0h1s+FDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeIdSde6adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeApHRTjvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeJjafzz3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeEHc1wYMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeYBKUVzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeP49HMEBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeZGO2iL3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmeTrKNhmYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmenlqi48VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmefr08NhFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmeo0PYnOTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmejd0JWvKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cme3Xwb2lEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmevaciGFjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cme4lYEGJOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmezDsD4gzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfG90q6OHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cme/G1pj+adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfIQbuMMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfCbQLNOedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfWVDBuXNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfOf6O5rhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfXbYkE9udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfSGyxA0LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfmCkO7QLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfeSuhbnpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfnVawD/3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmfha1kUbldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf1VJtix3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmftgNwzcidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf2WVNYbLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmfxUngHeKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgFQAlv61dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmf9RwAEMcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgGV5a/yodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgAoTGo73dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgUjkELYxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgMo2XLNfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgVnIZIhAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgQH27FsIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgkCyhSLqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgcLB0p3HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmglOB19v1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgjXCTEBKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg3bWd3B6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmgyFTWGypdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg9TZHuqndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cmg9XJYDDCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhRY287IUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhL4Qz1sddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhW13dKukdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmhVIKtxMndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 10, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.008, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (654 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-14T08:59:21.711411"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:875c6c1f9145d67239a10ac3afac85037a7e2fb962dedd96d49d2de2b34ad322
3
+ size 3013