Ilayk commited on
Commit
1e5da2b
·
verified ·
1 Parent(s): 429cf69

Upload folder using huggingface_hub

Browse files
MultiTaskRegressor_spectra__decode_4_complete_config.yaml ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ conformer_args:
2
+ dropout_p: 0.2
3
+ encoder:
4
+ - mhsa_pro
5
+ - conv
6
+ - ffn
7
+ encoder_dim: 2048
8
+ kernel_size: 3
9
+ norm: postnorm
10
+ num_heads: 8
11
+ num_layers: 8
12
+ timeshift: false
13
+ data_args:
14
+ batch_size: 64
15
+ continuum_norm: true
16
+ create_umap: false
17
+ data_dir: /data/lamost/data
18
+ dataset: SpectraDataset
19
+ exp_num: 4
20
+ lc_freq: 0.0208
21
+ log_dir: /data/lightSpec/logs
22
+ max_days_lc: 720
23
+ max_len_spectra: 4096
24
+ model_name: MultiTaskRegressor
25
+ num_epochs: 1000
26
+ test_run: false
27
+ model_args:
28
+ activation: silu
29
+ avg_output: true
30
+ beta: 1
31
+ checkpoint_num: 1
32
+ checkpoint_path: /data/lightSpec/logs/spec_decode2_2025-02-15/MultiTaskRegressor_spectra_decode_3.pth
33
+ dropout_p: 0.2
34
+ encoder_dims:
35
+ - 64
36
+ - 128
37
+ - 256
38
+ - 1024
39
+ - 2048
40
+ in_channels: 1
41
+ kernel_size: 3
42
+ load_checkpoint: true
43
+ num_layers: 5
44
+ num_quantiles: 5
45
+ output_dim: 3
46
+ stride: 1
47
+ transformer_layers: 4
48
+ model_name: MultiTaskRegressor
49
+ model_structure: "DistributedDataParallel(\n (module): MultiTaskRegressor(\n (encoder):\
50
+ \ MultiEncoder(\n (backbone): CNNEncoder(\n (activation): SiLU()\n \
51
+ \ (embedding): Sequential(\n (0): Conv1d(1, 64, kernel_size=(3,),\
52
+ \ stride=(1,), padding=same, bias=False)\n (1): BatchNorm1d(64, eps=1e-05,\
53
+ \ momentum=0.1, affine=True, track_running_stats=True)\n (2): SiLU()\n\
54
+ \ )\n (layers): ModuleList(\n (0): ConvBlock(\n \
55
+ \ (activation): SiLU()\n (layers): Sequential(\n (0):\
56
+ \ Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n \
57
+ \ (1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
58
+ \ (2): SiLU()\n )\n )\n (1): ConvBlock(\n\
59
+ \ (activation): SiLU()\n (layers): Sequential(\n \
60
+ \ (0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n\
61
+ \ (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
62
+ \ (2): SiLU()\n )\n )\n (2): ConvBlock(\n\
63
+ \ (activation): SiLU()\n (layers): Sequential(\n \
64
+ \ (0): Conv1d(256, 1024, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n\
65
+ \ (1): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
66
+ \ (2): SiLU()\n )\n )\n (3): ConvBlock(\n\
67
+ \ (activation): SiLU()\n (layers): Sequential(\n \
68
+ \ (0): Conv1d(1024, 2048, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n\
69
+ \ (1): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
70
+ \ (2): SiLU()\n )\n )\n (4): ConvBlock(\n\
71
+ \ (activation): SiLU()\n (layers): Sequential(\n \
72
+ \ (0): Conv1d(2048, 2048, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n\
73
+ \ (1): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
74
+ \ (2): SiLU()\n )\n )\n )\n (pool):\
75
+ \ MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n \
76
+ \ )\n (pe): RotaryEmbedding()\n (encoder): ConformerEncoder(\n \
77
+ \ (blocks): ModuleList(\n (0-7): 8 x ConformerBlock(\n (modlist):\
78
+ \ ModuleList(\n (0): PostNorm(\n (module): MHA_rotary(\n\
79
+ \ (query): Linear(in_features=2048, out_features=2048, bias=True)\n\
80
+ \ (key): Linear(in_features=2048, out_features=2048, bias=True)\n\
81
+ \ (value): Linear(in_features=2048, out_features=2048, bias=True)\n\
82
+ \ (rotary_emb): RotaryEmbedding()\n (output):\
83
+ \ Linear(in_features=2048, out_features=2048, bias=True)\n )\n \
84
+ \ (norm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n\
85
+ \ )\n (1): PostNorm(\n (module): ConvBlock(\n\
86
+ \ (layers): Sequential(\n (0): Conv1d(2048,\
87
+ \ 2048, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n \
88
+ \ (1): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
89
+ \ (2): SiLU()\n )\n )\n \
90
+ \ (norm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n \
91
+ \ )\n (2): PostNorm(\n (module): FeedForwardModule(\n\
92
+ \ (sequential): Sequential(\n (0): LayerNorm((2048,),\
93
+ \ eps=1e-05, elementwise_affine=True)\n (1): Linear(\n \
94
+ \ (linear): Linear(in_features=2048, out_features=8192, bias=True)\n\
95
+ \ )\n (2): SiLU()\n (3):\
96
+ \ Dropout(p=0.2, inplace=False)\n (4): Linear(\n \
97
+ \ (linear): Linear(in_features=8192, out_features=2048, bias=True)\n \
98
+ \ )\n (5): Dropout(p=0.2, inplace=False)\n \
99
+ \ )\n )\n (norm): LayerNorm((2048,),\
100
+ \ eps=1e-05, elementwise_affine=True)\n )\n )\n \
101
+ \ )\n )\n )\n )\n (decoder): CNNDecoder(\n (activation):\
102
+ \ SiLU()\n (initial_expand): Linear(in_features=2048, out_features=8192, bias=True)\n\
103
+ \ (layers): ModuleList(\n (0): Sequential(\n (0): ConvTranspose1d(2048,\
104
+ \ 1024, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1):\
105
+ \ BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
106
+ \ (2): SiLU()\n )\n (1): Sequential(\n (0): ConvTranspose1d(1024,\
107
+ \ 256, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1):\
108
+ \ BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
109
+ \ (2): SiLU()\n )\n (2): Sequential(\n (0): ConvTranspose1d(256,\
110
+ \ 128, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1):\
111
+ \ BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
112
+ \ (2): SiLU()\n )\n (3): Sequential(\n (0): ConvTranspose1d(128,\
113
+ \ 64, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1): BatchNorm1d(64,\
114
+ \ eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (2):\
115
+ \ SiLU()\n )\n (4): Sequential(\n (0): ConvTranspose1d(64,\
116
+ \ 64, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1): BatchNorm1d(64,\
117
+ \ eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (2):\
118
+ \ SiLU()\n )\n )\n (final_conv): ConvTranspose1d(64, 1, kernel_size=(3,),\
119
+ \ stride=(1,), padding=(1,))\n )\n (activation): SiLU()\n (regressor):\
120
+ \ Sequential(\n (0): Linear(in_features=2048, out_features=1024, bias=True)\n\
121
+ \ (1): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
122
+ \ (2): SiLU()\n (3): Dropout(p=0.2, inplace=False)\n (4): Linear(in_features=1024,\
123
+ \ out_features=15, bias=True)\n )\n )\n)"
124
+ num_params: 551944464
125
+ optim_args:
126
+ max_lr: 2e-5
127
+ quantiles:
128
+ - 0.1
129
+ - 0.25
130
+ - 0.5
131
+ - 0.75
132
+ - 0.9
133
+ steps_per_epoch: 3500
134
+ warmup_pct: 0.3
135
+ weight_decay: 5e-6
136
+ transforms: "Compose(\n LAMOSTSpectrumPreprocessor(blue_range=(3841, 5800), red_range=(5800,\
137
+ \ 8798), resample_step=0.0001)\n ToTensor\n)"
MultiTaskRegressor_spectra_decode_4.json ADDED
The diff for this file is too large to render. See raw diff
 
MultiTaskRegressor_spectra_decode_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bddc7598a43622e18542d078995bc6fa7dfdc235d2b66593eaecab83ec858f21
3
+ size 2208117049