Upload folder using huggingface_hub
Browse files
MultiTaskRegressor_spectra__decode_4_complete_config.yaml
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
conformer_args:
|
| 2 |
+
dropout_p: 0.2
|
| 3 |
+
encoder:
|
| 4 |
+
- mhsa_pro
|
| 5 |
+
- conv
|
| 6 |
+
- ffn
|
| 7 |
+
encoder_dim: 2048
|
| 8 |
+
kernel_size: 3
|
| 9 |
+
norm: postnorm
|
| 10 |
+
num_heads: 8
|
| 11 |
+
num_layers: 8
|
| 12 |
+
timeshift: false
|
| 13 |
+
data_args:
|
| 14 |
+
batch_size: 64
|
| 15 |
+
continuum_norm: true
|
| 16 |
+
create_umap: false
|
| 17 |
+
data_dir: /data/lamost/data
|
| 18 |
+
dataset: SpectraDataset
|
| 19 |
+
exp_num: 4
|
| 20 |
+
lc_freq: 0.0208
|
| 21 |
+
log_dir: /data/lightSpec/logs
|
| 22 |
+
max_days_lc: 720
|
| 23 |
+
max_len_spectra: 4096
|
| 24 |
+
model_name: MultiTaskRegressor
|
| 25 |
+
num_epochs: 1000
|
| 26 |
+
test_run: false
|
| 27 |
+
model_args:
|
| 28 |
+
activation: silu
|
| 29 |
+
avg_output: true
|
| 30 |
+
beta: 1
|
| 31 |
+
checkpoint_num: 1
|
| 32 |
+
checkpoint_path: /data/lightSpec/logs/spec_decode2_2025-02-15/MultiTaskRegressor_spectra_decode_3.pth
|
| 33 |
+
dropout_p: 0.2
|
| 34 |
+
encoder_dims:
|
| 35 |
+
- 64
|
| 36 |
+
- 128
|
| 37 |
+
- 256
|
| 38 |
+
- 1024
|
| 39 |
+
- 2048
|
| 40 |
+
in_channels: 1
|
| 41 |
+
kernel_size: 3
|
| 42 |
+
load_checkpoint: true
|
| 43 |
+
num_layers: 5
|
| 44 |
+
num_quantiles: 5
|
| 45 |
+
output_dim: 3
|
| 46 |
+
stride: 1
|
| 47 |
+
transformer_layers: 4
|
| 48 |
+
model_name: MultiTaskRegressor
|
| 49 |
+
model_structure: "DistributedDataParallel(\n (module): MultiTaskRegressor(\n (encoder):\
|
| 50 |
+
\ MultiEncoder(\n (backbone): CNNEncoder(\n (activation): SiLU()\n \
|
| 51 |
+
\ (embedding): Sequential(\n (0): Conv1d(1, 64, kernel_size=(3,),\
|
| 52 |
+
\ stride=(1,), padding=same, bias=False)\n (1): BatchNorm1d(64, eps=1e-05,\
|
| 53 |
+
\ momentum=0.1, affine=True, track_running_stats=True)\n (2): SiLU()\n\
|
| 54 |
+
\ )\n (layers): ModuleList(\n (0): ConvBlock(\n \
|
| 55 |
+
\ (activation): SiLU()\n (layers): Sequential(\n (0):\
|
| 56 |
+
\ Conv1d(64, 128, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n \
|
| 57 |
+
\ (1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 58 |
+
\ (2): SiLU()\n )\n )\n (1): ConvBlock(\n\
|
| 59 |
+
\ (activation): SiLU()\n (layers): Sequential(\n \
|
| 60 |
+
\ (0): Conv1d(128, 256, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n\
|
| 61 |
+
\ (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 62 |
+
\ (2): SiLU()\n )\n )\n (2): ConvBlock(\n\
|
| 63 |
+
\ (activation): SiLU()\n (layers): Sequential(\n \
|
| 64 |
+
\ (0): Conv1d(256, 1024, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n\
|
| 65 |
+
\ (1): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 66 |
+
\ (2): SiLU()\n )\n )\n (3): ConvBlock(\n\
|
| 67 |
+
\ (activation): SiLU()\n (layers): Sequential(\n \
|
| 68 |
+
\ (0): Conv1d(1024, 2048, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n\
|
| 69 |
+
\ (1): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 70 |
+
\ (2): SiLU()\n )\n )\n (4): ConvBlock(\n\
|
| 71 |
+
\ (activation): SiLU()\n (layers): Sequential(\n \
|
| 72 |
+
\ (0): Conv1d(2048, 2048, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n\
|
| 73 |
+
\ (1): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 74 |
+
\ (2): SiLU()\n )\n )\n )\n (pool):\
|
| 75 |
+
\ MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n \
|
| 76 |
+
\ )\n (pe): RotaryEmbedding()\n (encoder): ConformerEncoder(\n \
|
| 77 |
+
\ (blocks): ModuleList(\n (0-7): 8 x ConformerBlock(\n (modlist):\
|
| 78 |
+
\ ModuleList(\n (0): PostNorm(\n (module): MHA_rotary(\n\
|
| 79 |
+
\ (query): Linear(in_features=2048, out_features=2048, bias=True)\n\
|
| 80 |
+
\ (key): Linear(in_features=2048, out_features=2048, bias=True)\n\
|
| 81 |
+
\ (value): Linear(in_features=2048, out_features=2048, bias=True)\n\
|
| 82 |
+
\ (rotary_emb): RotaryEmbedding()\n (output):\
|
| 83 |
+
\ Linear(in_features=2048, out_features=2048, bias=True)\n )\n \
|
| 84 |
+
\ (norm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n\
|
| 85 |
+
\ )\n (1): PostNorm(\n (module): ConvBlock(\n\
|
| 86 |
+
\ (layers): Sequential(\n (0): Conv1d(2048,\
|
| 87 |
+
\ 2048, kernel_size=(3,), stride=(1,), padding=same, bias=False)\n \
|
| 88 |
+
\ (1): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 89 |
+
\ (2): SiLU()\n )\n )\n \
|
| 90 |
+
\ (norm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n \
|
| 91 |
+
\ )\n (2): PostNorm(\n (module): FeedForwardModule(\n\
|
| 92 |
+
\ (sequential): Sequential(\n (0): LayerNorm((2048,),\
|
| 93 |
+
\ eps=1e-05, elementwise_affine=True)\n (1): Linear(\n \
|
| 94 |
+
\ (linear): Linear(in_features=2048, out_features=8192, bias=True)\n\
|
| 95 |
+
\ )\n (2): SiLU()\n (3):\
|
| 96 |
+
\ Dropout(p=0.2, inplace=False)\n (4): Linear(\n \
|
| 97 |
+
\ (linear): Linear(in_features=8192, out_features=2048, bias=True)\n \
|
| 98 |
+
\ )\n (5): Dropout(p=0.2, inplace=False)\n \
|
| 99 |
+
\ )\n )\n (norm): LayerNorm((2048,),\
|
| 100 |
+
\ eps=1e-05, elementwise_affine=True)\n )\n )\n \
|
| 101 |
+
\ )\n )\n )\n )\n (decoder): CNNDecoder(\n (activation):\
|
| 102 |
+
\ SiLU()\n (initial_expand): Linear(in_features=2048, out_features=8192, bias=True)\n\
|
| 103 |
+
\ (layers): ModuleList(\n (0): Sequential(\n (0): ConvTranspose1d(2048,\
|
| 104 |
+
\ 1024, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1):\
|
| 105 |
+
\ BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 106 |
+
\ (2): SiLU()\n )\n (1): Sequential(\n (0): ConvTranspose1d(1024,\
|
| 107 |
+
\ 256, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1):\
|
| 108 |
+
\ BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 109 |
+
\ (2): SiLU()\n )\n (2): Sequential(\n (0): ConvTranspose1d(256,\
|
| 110 |
+
\ 128, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1):\
|
| 111 |
+
\ BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 112 |
+
\ (2): SiLU()\n )\n (3): Sequential(\n (0): ConvTranspose1d(128,\
|
| 113 |
+
\ 64, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1): BatchNorm1d(64,\
|
| 114 |
+
\ eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (2):\
|
| 115 |
+
\ SiLU()\n )\n (4): Sequential(\n (0): ConvTranspose1d(64,\
|
| 116 |
+
\ 64, kernel_size=(4,), stride=(2,), padding=(1,), bias=False)\n (1): BatchNorm1d(64,\
|
| 117 |
+
\ eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n (2):\
|
| 118 |
+
\ SiLU()\n )\n )\n (final_conv): ConvTranspose1d(64, 1, kernel_size=(3,),\
|
| 119 |
+
\ stride=(1,), padding=(1,))\n )\n (activation): SiLU()\n (regressor):\
|
| 120 |
+
\ Sequential(\n (0): Linear(in_features=2048, out_features=1024, bias=True)\n\
|
| 121 |
+
\ (1): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n\
|
| 122 |
+
\ (2): SiLU()\n (3): Dropout(p=0.2, inplace=False)\n (4): Linear(in_features=1024,\
|
| 123 |
+
\ out_features=15, bias=True)\n )\n )\n)"
|
| 124 |
+
num_params: 551944464
|
| 125 |
+
optim_args:
|
| 126 |
+
max_lr: 2e-5
|
| 127 |
+
quantiles:
|
| 128 |
+
- 0.1
|
| 129 |
+
- 0.25
|
| 130 |
+
- 0.5
|
| 131 |
+
- 0.75
|
| 132 |
+
- 0.9
|
| 133 |
+
steps_per_epoch: 3500
|
| 134 |
+
warmup_pct: 0.3
|
| 135 |
+
weight_decay: 5e-6
|
| 136 |
+
transforms: "Compose(\n LAMOSTSpectrumPreprocessor(blue_range=(3841, 5800), red_range=(5800,\
|
| 137 |
+
\ 8798), resample_step=0.0001)\n ToTensor\n)"
|
MultiTaskRegressor_spectra_decode_4.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
MultiTaskRegressor_spectra_decode_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bddc7598a43622e18542d078995bc6fa7dfdc235d2b66593eaecab83ec858f21
|
| 3 |
+
size 2208117049
|