Ikram11 commited on
Commit
fb22f68
1 Parent(s): 0a12ec8

Training complete

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9337967560410461
29
  - name: Recall
30
  type: recall
31
- value: 0.9495119488387749
32
  - name: F1
33
  type: f1
34
- value: 0.941588785046729
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9864308000235474
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,9 +44,9 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0619
48
- - Precision: 0.9338
49
- - Recall: 0.9495
50
  - F1: 0.9416
51
  - Accuracy: 0.9864
52
 
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0761 | 1.0 | 1756 | 0.0650 | 0.9078 | 0.9374 | 0.9223 | 0.9826 |
83
- | 0.0341 | 2.0 | 3512 | 0.0708 | 0.9317 | 0.9463 | 0.9390 | 0.9852 |
84
- | 0.0208 | 3.0 | 5268 | 0.0619 | 0.9338 | 0.9495 | 0.9416 | 0.9864 |
85
 
86
 
87
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9327828241123038
29
  - name: Recall
30
  type: recall
31
+ value: 0.9505217098619994
32
  - name: F1
33
  type: f1
34
+ value: 0.9415687255147119
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9863572143403779
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0620
48
+ - Precision: 0.9328
49
+ - Recall: 0.9505
50
  - F1: 0.9416
51
  - Accuracy: 0.9864
52
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0767 | 1.0 | 1756 | 0.0664 | 0.8984 | 0.9327 | 0.9152 | 0.9822 |
83
+ | 0.036 | 2.0 | 3512 | 0.0679 | 0.9271 | 0.9456 | 0.9363 | 0.9845 |
84
+ | 0.0228 | 3.0 | 5268 | 0.0620 | 0.9328 | 0.9505 | 0.9416 | 0.9864 |
85
 
86
 
87
  ### Framework versions