first dummy solution
Browse files- LandingPod_toy.zip +3 -0
- LandingPod_toy/_stable_baselines3_version +1 -0
- LandingPod_toy/data +95 -0
- LandingPod_toy/policy.optimizer.pth +3 -0
- LandingPod_toy/policy.pth +3 -0
- LandingPod_toy/pytorch_variables.pth +3 -0
- LandingPod_toy/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LandingPod_toy.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae98b34a683741a67b2b85f058ffe5b403f6cc8b920b9c0c92e833dc3fadf6f1
|
3 |
+
size 147020
|
LandingPod_toy/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
LandingPod_toy/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fde8d8d8af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fde8d8d8b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fde8d8d8c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fde8d8d8ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fde8d8d8d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fde8d8d8dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fde8d8d8e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fde8d8d8ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fde8d8d8f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fde8d8db040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fde8d8db0d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fde8d8db160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fde8d8d4780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675873217006203000,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN7lD3nEAk+3oK/PLCnvb6xUZM9hiONvQAAAAAAAAAArg8dvyeASb7iCIG7jMX4ucbeTD6btp06AACAPwAAgD8zTFM97AmGuXbCybYRv02xwqRJustG7DUAAIA/AACAP4ABHz5E2YY/s87OPhKQJr93yoo+nXlHPgAAAAAAAAAAM16BvXpXsj9K7QC/9VhYvvdgSTwvHpq9AAAAAAAAAABmPuu7SIOpuoNiXjYiStcuxtWxuqzYgrUAAIA/AACAP2b1vzzsUOG77p2ePKX2vzzy/7s8rtgCOgAAgD8AAIA/M9mvPNfzZrkIXHc5EqGwNF2hqztvJpG4AACAPwAAgD8AR9O89ugXugmgkDujQ4A4cnptO4d8wrgAAIA/AACAP5p4uT2dIKw/7rYlPxR6tb47CS89whGTPgAAAAAAAAAAZhxSPD31pz/s3QQ+x2cMv5BFSTxWxW09AAAAAAAAAADz8N494dCVuiJfl7jr54azMz9TukZ5rzcAAAAAAACAP82+Z71qdAs+MeC4PrsQnL4Ylno+GH3CPQAAAAAAAAAAgLSRPbin+LveHB28XyCCPDR+RT2ObVu9AACAPwAAgD/aIry98buWPvOswT565bW+TOMoPc2FhT0AAAAAAAAAAGYmTDz2xLo/U/vLPaWRmzvTR0k8llsitwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoFIlyp5RcECUhpRSlIwBbJRL6IwBdJRHQI5hkpw0fo11fZQoaAZoCWgPQwgQO1Po/J5yQJSGlFKUaBVL7GgWR0COYf4Fiay9dX2UKGgGaAloD0MIic4yixBdcUCUhpRSlGgVTQMBaBZHQI5iN7laKUF1fZQoaAZoCWgPQwj4wfnUsWpAQJSGlFKUaBVLrmgWR0COYqD4gzP9dX2UKGgGaAloD0MII72o3S8HbUCUhpRSlGgVS99oFkdAjmLA6+36RHV9lChoBmgJaA9DCPD5YYRwWnBAlIaUUpRoFUvvaBZHQI5jhMWXTmZ1fZQoaAZoCWgPQwglWYejK8pvQJSGlFKUaBVL7GgWR0COY/aL4vexdX2UKGgGaAloD0MI8+fbgiW2bkCUhpRSlGgVS9toFkdAjmQhAnlXBHV9lChoBmgJaA9DCGOcvwlFgnFAlIaUUpRoFUv5aBZHQI5lQ2wV0tB1fZQoaAZoCWgPQwikpfJ2RBpzQJSGlFKUaBVLy2gWR0COZW7zTWoWdX2UKGgGaAloD0MIILQevgxKcUCUhpRSlGgVTQYBaBZHQI5lqvicXnB1fZQoaAZoCWgPQwjBOSNKe29IQJSGlFKUaBVLpWgWR0COZn2VVxS6dX2UKGgGaAloD0MI+1sC8I8pcECUhpRSlGgVS+5oFkdAjmaTT4L1EnV9lChoBmgJaA9DCB6jPPOyx3NAlIaUUpRoFUvWaBZHQI5mtXJYDDF1fZQoaAZoCWgPQwgcz2dAffZyQJSGlFKUaBVL52gWR0COZ0AWBSUDdX2UKGgGaAloD0MI5Uf8irVzcECUhpRSlGgVS+1oFkdAjmfncL0BfnV9lChoBmgJaA9DCNFZZhGKW3JAlIaUUpRoFUvTaBZHQI5oPZdv8651fZQoaAZoCWgPQwgjhh3GJJdtQJSGlFKUaBVLyWgWR0COaLE9dNWVdX2UKGgGaAloD0MIhZfg1EcpcECUhpRSlGgVS/NoFkdAjmloESuhbnV9lChoBmgJaA9DCDRMbanDBXNAlIaUUpRoFUvfaBZHQI5qqqjrRjV1fZQoaAZoCWgPQwj7yRgfplNyQJSGlFKUaBVNIwFoFkdAjmtwDV6NVHV9lChoBmgJaA9DCAdCsoCJpHNAlIaUUpRoFUvzaBZHQI5rjS7Xg+B1fZQoaAZoCWgPQwibOo+K/y1KQJSGlFKUaBVLpWgWR0COa59ETg2qdX2UKGgGaAloD0MIWkV/aKYgckCUhpRSlGgVTQ4BaBZHQI5rvhCMPz51fZQoaAZoCWgPQwhgdHlzOFZuQJSGlFKUaBVL3GgWR0COa/qdH2AYdX2UKGgGaAloD0MI5Q0w8x0yTECUhpRSlGgVS7doFkdAjmxDFQ2uPnV9lChoBmgJaA9DCC6sG+8Oa3JAlIaUUpRoFUv2aBZHQI5tFtqHoHN1fZQoaAZoCWgPQwhvL2mM1k1yQJSGlFKUaBVL82gWR0CObdZf2K2sdX2UKGgGaAloD0MIpYKKqh+XcECUhpRSlGgVS+loFkdAjm5cAq/dqXV9lChoBmgJaA9DCHr83qZ/+HJAlIaUUpRoFUvgaBZHQI5vLej2zv91fZQoaAZoCWgPQwg7GLFPAHFuQJSGlFKUaBVNCQFoFkdAjnBAYxcmjXV9lChoBmgJaA9DCCCySBPvpk1AlIaUUpRoFUuTaBZHQI5waPIXCTF1fZQoaAZoCWgPQwjRrdf0IKNtQJSGlFKUaBVNCQFoFkdAjnE64Ds+mnV9lChoBmgJaA9DCPuxSX5EaHJAlIaUUpRoFU16AWgWR0COcU4XoC+2dX2UKGgGaAloD0MIAI3SpX8BNkCUhpRSlGgVS3RoFkdAjnHWmYSg5HV9lChoBmgJaA9DCD0MrU5Omm5AlIaUUpRoFU0HAWgWR0COcffXPJJYdX2UKGgGaAloD0MIHXbfMTzockCUhpRSlGgVS+RoFkdAjnIevIOpbXV9lChoBmgJaA9DCN2YnrBEF3BAlIaUUpRoFUu8aBZHQI5ycyBTXJ51fZQoaAZoCWgPQwjeBN80/U9xQJSGlFKUaBVL7WgWR0COc0zQeFL4dX2UKGgGaAloD0MIN/5EZYMucUCUhpRSlGgVTQkBaBZHQI50EtwrDqJ1fZQoaAZoCWgPQwinzw647odwQJSGlFKUaBVNkwNoFkdAjnRmipNsWXV9lChoBmgJaA9DCF+zXDb6+nJAlIaUUpRoFUv1aBZHQI52e0Z3s5Z1fZQoaAZoCWgPQwi1FmahndBuQJSGlFKUaBVL8GgWR0COdzJcPe54dX2UKGgGaAloD0MI9dbAVomgcECUhpRSlGgVS8VoFkdAjne588cMmXV9lChoBmgJaA9DCO5Cc53Gy3BAlIaUUpRoFUvOaBZHQI54KJj2Bat1fZQoaAZoCWgPQwiskPKTauxtQJSGlFKUaBVNDgFoFkdAjnm1FH8TBnV9lChoBmgJaA9DCHvYCwWs/XFAlIaUUpRoFUvgaBZHQI550IgNgBt1fZQoaAZoCWgPQwhYjLrWHrRxQJSGlFKUaBVNNgFoFkdAjnsexfOUuHV9lChoBmgJaA9DCGKiQQpernBAlIaUUpRoFUv4aBZHQI57NKmKqGV1fZQoaAZoCWgPQwg1XU90nVByQJSGlFKUaBVNEAFoFkdAjnuFY+0PYnV9lChoBmgJaA9DCO7O2m2XanFAlIaUUpRoFUvVaBZHQI57teQdS2p1fZQoaAZoCWgPQwjlmZfDbuFyQJSGlFKUaBVNHwFoFkdAjnvrt/nW8XV9lChoBmgJaA9DCChFK/cCpW5AlIaUUpRoFUv+aBZHQI58UiKR+0B1fZQoaAZoCWgPQwh+i06WmitzQJSGlFKUaBVL7GgWR0COfMWu5jH5dX2UKGgGaAloD0MIjSjtDX6DcUCUhpRSlGgVTQwCaBZHQI5/NZFG5MF1fZQoaAZoCWgPQwh56Ltb2YNyQJSGlFKUaBVL/2gWR0COgJ9LHuJDdX2UKGgGaAloD0MIbJc2HJa2bUCUhpRSlGgVTSMBaBZHQI6BT4xk/bF1fZQoaAZoCWgPQwjAJQD/FNtxQJSGlFKUaBVL/WgWR0COgZg6U7jldX2UKGgGaAloD0MIPNwODYtucECUhpRSlGgVS8poFkdAjoKL/CIk7nV9lChoBmgJaA9DCEMc6+I2929AlIaUUpRoFUv5aBZHQI6DG8wpON51fZQoaAZoCWgPQwh8RbdeExlzQJSGlFKUaBVNAQFoFkdAjoNRx1gYxnV9lChoBmgJaA9DCB1VTRB1yXJAlIaUUpRoFUvbaBZHQI6DT48EFGJ1fZQoaAZoCWgPQwjPwMjLmrlxQJSGlFKUaBVL1mgWR0COg5ylvZRLdX2UKGgGaAloD0MIGt1B7ExUbUCUhpRSlGgVS/loFkdAjoSdCVrylXV9lChoBmgJaA9DCLzplh1i7XFAlIaUUpRoFUvvaBZHQI6Fl0cOskp1fZQoaAZoCWgPQwiZEkn0stJxQJSGlFKUaBVNFwFoFkdAjoYP8Q7LdXV9lChoBmgJaA9DCG6hKxGoOW1AlIaUUpRoFU0uAWgWR0COh1n9vS+hdX2UKGgGaAloD0MIibK3lPNdc0CUhpRSlGgVS8NoFkdAjohw2/BWP3V9lChoBmgJaA9DCOAT61S5KXJAlIaUUpRoFUv3aBZHQI6IbneSB9V1fZQoaAZoCWgPQwgxJCcTN6RwQJSGlFKUaBVL0WgWR0COiTLdvbXZdX2UKGgGaAloD0MILq2GxL3kb0CUhpRSlGgVS9xoFkdAjotnPE87p3V9lChoBmgJaA9DCAU25+BZtXFAlIaUUpRoFUvwaBZHQI6MUYO2AoZ1fZQoaAZoCWgPQwhvumWHeAlxQJSGlFKUaBVLxmgWR0COjhq9oN/fdX2UKGgGaAloD0MIsKnzqPiVVMCUhpRSlGgVS45oFkdAjo6O1fE4vXV9lChoBmgJaA9DCOYHrvLExHBAlIaUUpRoFU0XAWgWR0COjpomG/N8dX2UKGgGaAloD0MIjWMkewTlcECUhpRSlGgVTU8BaBZHQI6P7SPU8V51fZQoaAZoCWgPQwgf9kIB23JRQJSGlFKUaBVN6ANoFkdAjpAgmzByj3V9lChoBmgJaA9DCFH4bB0cOlVAlIaUUpRoFU3oA2gWR0COkLQmeDnOdX2UKGgGaAloD0MIIy4AjZK4cUCUhpRSlGgVS8poFkdAjpEnp8neBXV9lChoBmgJaA9DCJKyRdJuKHBAlIaUUpRoFU1zAWgWR0COkd8JD3M7dX2UKGgGaAloD0MIXJAty5eBcUCUhpRSlGgVS91oFkdAjpKofSx7iXV9lChoBmgJaA9DCCGQSxy5xHFAlIaUUpRoFU1SAWgWR0COk1OjZcs2dX2UKGgGaAloD0MI+7FJfgSIc0CUhpRSlGgVTYEBaBZHQI6T/336AOJ1fZQoaAZoCWgPQwi2EyUh0cxxQJSGlFKUaBVLymgWR0COlKvsZ5zHdX2UKGgGaAloD0MIPzifOtY1ckCUhpRSlGgVS+NoFkdAjpTVkDp1R3V9lChoBmgJaA9DCDdtxmmI9nJAlIaUUpRoFU1dAWgWR0COlW7GvOhTdX2UKGgGaAloD0MInKiluRUeOUCUhpRSlGgVS4VoFkdAjpXoDoyKvXV9lChoBmgJaA9DCOEoeXXOD3RAlIaUUpRoFUvWaBZHQI6WlF6Rhc91fZQoaAZoCWgPQwho6J/gYthyQJSGlFKUaBVL8WgWR0COlyh3aBZqdX2UKGgGaAloD0MIGD4ipkRsRECUhpRSlGgVS6doFkdAjphWXb/OuHV9lChoBmgJaA9DCB+/t+lPyHJAlIaUUpRoFUvzaBZHQI6YqNZNfw91fZQoaAZoCWgPQwhOJ9nqMlNwQJSGlFKUaBVNFwFoFkdAjpjJxWDHwXV9lChoBmgJaA9DCA39E1ysSGlAlIaUUpRoFU2CA2gWR0COmZWfbsWwdX2UKGgGaAloD0MIJZUp5iAgckCUhpRSlGgVS/BoFkdAjpoUcn3L3nV9lChoBmgJaA9DCHYXKCmwaXJAlIaUUpRoFU0kAWgWR0COmiGEf1YhdX2UKGgGaAloD0MIbmk1JK7GcUCUhpRSlGgVTXYBaBZHQI6dpX8wYch1fZQoaAZoCWgPQwiwWS4bHThvQJSGlFKUaBVLz2gWR0COnmG0u14PdX2UKGgGaAloD0MI+DO8WQOEbkCUhpRSlGgVS/ZoFkdAjp5hLf1pTXV9lChoBmgJaA9DCJ6ymq5nu3FAlIaUUpRoFU0HAWgWR0COnnDCP6sRdX2UKGgGaAloD0MI3ZVdMPjZckCUhpRSlGgVTUUBaBZHQI6eiHj6vaF1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
LandingPod_toy/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f34dc9d40423af6dbfe5ecbde2c5ab2e6594de42a1c7ff5e6e6718862c574749
|
3 |
+
size 87545
|
LandingPod_toy/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2945cab346b2cd46677b596fc51b6941bd5012825f22debca8773361edca7e5b
|
3 |
+
size 43265
|
LandingPod_toy/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LandingPod_toy/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.98 +/- 25.02
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fde8d8d8af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fde8d8d8b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fde8d8d8c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fde8d8d8ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fde8d8d8d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fde8d8d8dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fde8d8d8e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fde8d8d8ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fde8d8d8f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fde8d8db040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fde8d8db0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fde8d8db160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fde8d8d4780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675873217006203000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN7lD3nEAk+3oK/PLCnvb6xUZM9hiONvQAAAAAAAAAArg8dvyeASb7iCIG7jMX4ucbeTD6btp06AACAPwAAgD8zTFM97AmGuXbCybYRv02xwqRJustG7DUAAIA/AACAP4ABHz5E2YY/s87OPhKQJr93yoo+nXlHPgAAAAAAAAAAM16BvXpXsj9K7QC/9VhYvvdgSTwvHpq9AAAAAAAAAABmPuu7SIOpuoNiXjYiStcuxtWxuqzYgrUAAIA/AACAP2b1vzzsUOG77p2ePKX2vzzy/7s8rtgCOgAAgD8AAIA/M9mvPNfzZrkIXHc5EqGwNF2hqztvJpG4AACAPwAAgD8AR9O89ugXugmgkDujQ4A4cnptO4d8wrgAAIA/AACAP5p4uT2dIKw/7rYlPxR6tb47CS89whGTPgAAAAAAAAAAZhxSPD31pz/s3QQ+x2cMv5BFSTxWxW09AAAAAAAAAADz8N494dCVuiJfl7jr54azMz9TukZ5rzcAAAAAAACAP82+Z71qdAs+MeC4PrsQnL4Ylno+GH3CPQAAAAAAAAAAgLSRPbin+LveHB28XyCCPDR+RT2ObVu9AACAPwAAgD/aIry98buWPvOswT565bW+TOMoPc2FhT0AAAAAAAAAAGYmTDz2xLo/U/vLPaWRmzvTR0k8llsitwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoFIlyp5RcECUhpRSlIwBbJRL6IwBdJRHQI5hkpw0fo11fZQoaAZoCWgPQwgQO1Po/J5yQJSGlFKUaBVL7GgWR0COYf4Fiay9dX2UKGgGaAloD0MIic4yixBdcUCUhpRSlGgVTQMBaBZHQI5iN7laKUF1fZQoaAZoCWgPQwj4wfnUsWpAQJSGlFKUaBVLrmgWR0COYqD4gzP9dX2UKGgGaAloD0MII72o3S8HbUCUhpRSlGgVS99oFkdAjmLA6+36RHV9lChoBmgJaA9DCPD5YYRwWnBAlIaUUpRoFUvvaBZHQI5jhMWXTmZ1fZQoaAZoCWgPQwglWYejK8pvQJSGlFKUaBVL7GgWR0COY/aL4vexdX2UKGgGaAloD0MI8+fbgiW2bkCUhpRSlGgVS9toFkdAjmQhAnlXBHV9lChoBmgJaA9DCGOcvwlFgnFAlIaUUpRoFUv5aBZHQI5lQ2wV0tB1fZQoaAZoCWgPQwikpfJ2RBpzQJSGlFKUaBVLy2gWR0COZW7zTWoWdX2UKGgGaAloD0MIILQevgxKcUCUhpRSlGgVTQYBaBZHQI5lqvicXnB1fZQoaAZoCWgPQwjBOSNKe29IQJSGlFKUaBVLpWgWR0COZn2VVxS6dX2UKGgGaAloD0MI+1sC8I8pcECUhpRSlGgVS+5oFkdAjmaTT4L1EnV9lChoBmgJaA9DCB6jPPOyx3NAlIaUUpRoFUvWaBZHQI5mtXJYDDF1fZQoaAZoCWgPQwgcz2dAffZyQJSGlFKUaBVL52gWR0COZ0AWBSUDdX2UKGgGaAloD0MI5Uf8irVzcECUhpRSlGgVS+1oFkdAjmfncL0BfnV9lChoBmgJaA9DCNFZZhGKW3JAlIaUUpRoFUvTaBZHQI5oPZdv8651fZQoaAZoCWgPQwgjhh3GJJdtQJSGlFKUaBVLyWgWR0COaLE9dNWVdX2UKGgGaAloD0MIhZfg1EcpcECUhpRSlGgVS/NoFkdAjmloESuhbnV9lChoBmgJaA9DCDRMbanDBXNAlIaUUpRoFUvfaBZHQI5qqqjrRjV1fZQoaAZoCWgPQwj7yRgfplNyQJSGlFKUaBVNIwFoFkdAjmtwDV6NVHV9lChoBmgJaA9DCAdCsoCJpHNAlIaUUpRoFUvzaBZHQI5rjS7Xg+B1fZQoaAZoCWgPQwibOo+K/y1KQJSGlFKUaBVLpWgWR0COa59ETg2qdX2UKGgGaAloD0MIWkV/aKYgckCUhpRSlGgVTQ4BaBZHQI5rvhCMPz51fZQoaAZoCWgPQwhgdHlzOFZuQJSGlFKUaBVL3GgWR0COa/qdH2AYdX2UKGgGaAloD0MI5Q0w8x0yTECUhpRSlGgVS7doFkdAjmxDFQ2uPnV9lChoBmgJaA9DCC6sG+8Oa3JAlIaUUpRoFUv2aBZHQI5tFtqHoHN1fZQoaAZoCWgPQwhvL2mM1k1yQJSGlFKUaBVL82gWR0CObdZf2K2sdX2UKGgGaAloD0MIpYKKqh+XcECUhpRSlGgVS+loFkdAjm5cAq/dqXV9lChoBmgJaA9DCHr83qZ/+HJAlIaUUpRoFUvgaBZHQI5vLej2zv91fZQoaAZoCWgPQwg7GLFPAHFuQJSGlFKUaBVNCQFoFkdAjnBAYxcmjXV9lChoBmgJaA9DCCCySBPvpk1AlIaUUpRoFUuTaBZHQI5waPIXCTF1fZQoaAZoCWgPQwjRrdf0IKNtQJSGlFKUaBVNCQFoFkdAjnE64Ds+mnV9lChoBmgJaA9DCPuxSX5EaHJAlIaUUpRoFU16AWgWR0COcU4XoC+2dX2UKGgGaAloD0MIAI3SpX8BNkCUhpRSlGgVS3RoFkdAjnHWmYSg5HV9lChoBmgJaA9DCD0MrU5Omm5AlIaUUpRoFU0HAWgWR0COcffXPJJYdX2UKGgGaAloD0MIHXbfMTzockCUhpRSlGgVS+RoFkdAjnIevIOpbXV9lChoBmgJaA9DCN2YnrBEF3BAlIaUUpRoFUu8aBZHQI5ycyBTXJ51fZQoaAZoCWgPQwjeBN80/U9xQJSGlFKUaBVL7WgWR0COc0zQeFL4dX2UKGgGaAloD0MIN/5EZYMucUCUhpRSlGgVTQkBaBZHQI50EtwrDqJ1fZQoaAZoCWgPQwinzw647odwQJSGlFKUaBVNkwNoFkdAjnRmipNsWXV9lChoBmgJaA9DCF+zXDb6+nJAlIaUUpRoFUv1aBZHQI52e0Z3s5Z1fZQoaAZoCWgPQwi1FmahndBuQJSGlFKUaBVL8GgWR0COdzJcPe54dX2UKGgGaAloD0MI9dbAVomgcECUhpRSlGgVS8VoFkdAjne588cMmXV9lChoBmgJaA9DCO5Cc53Gy3BAlIaUUpRoFUvOaBZHQI54KJj2Bat1fZQoaAZoCWgPQwiskPKTauxtQJSGlFKUaBVNDgFoFkdAjnm1FH8TBnV9lChoBmgJaA9DCHvYCwWs/XFAlIaUUpRoFUvgaBZHQI550IgNgBt1fZQoaAZoCWgPQwhYjLrWHrRxQJSGlFKUaBVNNgFoFkdAjnsexfOUuHV9lChoBmgJaA9DCGKiQQpernBAlIaUUpRoFUv4aBZHQI57NKmKqGV1fZQoaAZoCWgPQwg1XU90nVByQJSGlFKUaBVNEAFoFkdAjnuFY+0PYnV9lChoBmgJaA9DCO7O2m2XanFAlIaUUpRoFUvVaBZHQI57teQdS2p1fZQoaAZoCWgPQwjlmZfDbuFyQJSGlFKUaBVNHwFoFkdAjnvrt/nW8XV9lChoBmgJaA9DCChFK/cCpW5AlIaUUpRoFUv+aBZHQI58UiKR+0B1fZQoaAZoCWgPQwh+i06WmitzQJSGlFKUaBVL7GgWR0COfMWu5jH5dX2UKGgGaAloD0MIjSjtDX6DcUCUhpRSlGgVTQwCaBZHQI5/NZFG5MF1fZQoaAZoCWgPQwh56Ltb2YNyQJSGlFKUaBVL/2gWR0COgJ9LHuJDdX2UKGgGaAloD0MIbJc2HJa2bUCUhpRSlGgVTSMBaBZHQI6BT4xk/bF1fZQoaAZoCWgPQwjAJQD/FNtxQJSGlFKUaBVL/WgWR0COgZg6U7jldX2UKGgGaAloD0MIPNwODYtucECUhpRSlGgVS8poFkdAjoKL/CIk7nV9lChoBmgJaA9DCEMc6+I2929AlIaUUpRoFUv5aBZHQI6DG8wpON51fZQoaAZoCWgPQwh8RbdeExlzQJSGlFKUaBVNAQFoFkdAjoNRx1gYxnV9lChoBmgJaA9DCB1VTRB1yXJAlIaUUpRoFUvbaBZHQI6DT48EFGJ1fZQoaAZoCWgPQwjPwMjLmrlxQJSGlFKUaBVL1mgWR0COg5ylvZRLdX2UKGgGaAloD0MIGt1B7ExUbUCUhpRSlGgVS/loFkdAjoSdCVrylXV9lChoBmgJaA9DCLzplh1i7XFAlIaUUpRoFUvvaBZHQI6Fl0cOskp1fZQoaAZoCWgPQwiZEkn0stJxQJSGlFKUaBVNFwFoFkdAjoYP8Q7LdXV9lChoBmgJaA9DCG6hKxGoOW1AlIaUUpRoFU0uAWgWR0COh1n9vS+hdX2UKGgGaAloD0MIibK3lPNdc0CUhpRSlGgVS8NoFkdAjohw2/BWP3V9lChoBmgJaA9DCOAT61S5KXJAlIaUUpRoFUv3aBZHQI6IbneSB9V1fZQoaAZoCWgPQwgxJCcTN6RwQJSGlFKUaBVL0WgWR0COiTLdvbXZdX2UKGgGaAloD0MILq2GxL3kb0CUhpRSlGgVS9xoFkdAjotnPE87p3V9lChoBmgJaA9DCAU25+BZtXFAlIaUUpRoFUvwaBZHQI6MUYO2AoZ1fZQoaAZoCWgPQwhvumWHeAlxQJSGlFKUaBVLxmgWR0COjhq9oN/fdX2UKGgGaAloD0MIsKnzqPiVVMCUhpRSlGgVS45oFkdAjo6O1fE4vXV9lChoBmgJaA9DCOYHrvLExHBAlIaUUpRoFU0XAWgWR0COjpomG/N8dX2UKGgGaAloD0MIjWMkewTlcECUhpRSlGgVTU8BaBZHQI6P7SPU8V51fZQoaAZoCWgPQwgf9kIB23JRQJSGlFKUaBVN6ANoFkdAjpAgmzByj3V9lChoBmgJaA9DCFH4bB0cOlVAlIaUUpRoFU3oA2gWR0COkLQmeDnOdX2UKGgGaAloD0MIIy4AjZK4cUCUhpRSlGgVS8poFkdAjpEnp8neBXV9lChoBmgJaA9DCJKyRdJuKHBAlIaUUpRoFU1zAWgWR0COkd8JD3M7dX2UKGgGaAloD0MIXJAty5eBcUCUhpRSlGgVS91oFkdAjpKofSx7iXV9lChoBmgJaA9DCCGQSxy5xHFAlIaUUpRoFU1SAWgWR0COk1OjZcs2dX2UKGgGaAloD0MI+7FJfgSIc0CUhpRSlGgVTYEBaBZHQI6T/336AOJ1fZQoaAZoCWgPQwi2EyUh0cxxQJSGlFKUaBVLymgWR0COlKvsZ5zHdX2UKGgGaAloD0MIPzifOtY1ckCUhpRSlGgVS+NoFkdAjpTVkDp1R3V9lChoBmgJaA9DCDdtxmmI9nJAlIaUUpRoFU1dAWgWR0COlW7GvOhTdX2UKGgGaAloD0MInKiluRUeOUCUhpRSlGgVS4VoFkdAjpXoDoyKvXV9lChoBmgJaA9DCOEoeXXOD3RAlIaUUpRoFUvWaBZHQI6WlF6Rhc91fZQoaAZoCWgPQwho6J/gYthyQJSGlFKUaBVL8WgWR0COlyh3aBZqdX2UKGgGaAloD0MIGD4ipkRsRECUhpRSlGgVS6doFkdAjphWXb/OuHV9lChoBmgJaA9DCB+/t+lPyHJAlIaUUpRoFUvzaBZHQI6YqNZNfw91fZQoaAZoCWgPQwhOJ9nqMlNwQJSGlFKUaBVNFwFoFkdAjpjJxWDHwXV9lChoBmgJaA9DCA39E1ysSGlAlIaUUpRoFU2CA2gWR0COmZWfbsWwdX2UKGgGaAloD0MIJZUp5iAgckCUhpRSlGgVS/BoFkdAjpoUcn3L3nV9lChoBmgJaA9DCHYXKCmwaXJAlIaUUpRoFU0kAWgWR0COmiGEf1YhdX2UKGgGaAloD0MIbmk1JK7GcUCUhpRSlGgVTXYBaBZHQI6dpX8wYch1fZQoaAZoCWgPQwiwWS4bHThvQJSGlFKUaBVLz2gWR0COnmG0u14PdX2UKGgGaAloD0MI+DO8WQOEbkCUhpRSlGgVS/ZoFkdAjp5hLf1pTXV9lChoBmgJaA9DCJ6ymq5nu3FAlIaUUpRoFU0HAWgWR0COnnDCP6sRdX2UKGgGaAloD0MI3ZVdMPjZckCUhpRSlGgVTUUBaBZHQI6eiHj6vaF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9pZ29yL29wdC9hbmFjb25kYTMvZW52cy9weTM4cmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (322 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.98297673351794, "std_reward": 25.020275026195673, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T23:24:53.285995"}
|