Iamvincent
commited on
Commit
•
9202e4e
1
Parent(s):
70358ee
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +85 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.82 +/- 0.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d57a4812eb8b135ac089fa2d28bfab7197a34115be83406d6405f4d241f17507
|
3 |
+
size 155313
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f42c3e4fa60>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f42c3e4aab0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {},
|
13 |
+
"observation_space": {
|
14 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
15 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
16 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
17 |
+
"_shape": null,
|
18 |
+
"dtype": null,
|
19 |
+
"_np_random": null
|
20 |
+
},
|
21 |
+
"action_space": {
|
22 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
23 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
24 |
+
"dtype": "float32",
|
25 |
+
"_shape": [
|
26 |
+
3
|
27 |
+
],
|
28 |
+
"low": "[-1. -1. -1.]",
|
29 |
+
"high": "[1. 1. 1.]",
|
30 |
+
"bounded_below": "[ True True True]",
|
31 |
+
"bounded_above": "[ True True True]",
|
32 |
+
"_np_random": null
|
33 |
+
},
|
34 |
+
"n_envs": 4,
|
35 |
+
"num_timesteps": 1000000,
|
36 |
+
"_total_timesteps": 1000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1674050336684184805,
|
41 |
+
"learning_rate": 0.0005,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANXPCPojEhDzZWQk/NXPCPojEhDzZWQk/NXPCPojEhDzZWQk/NXPCPojEhDzZWQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKvrVP4Kt1T5EgmC/fZhxPuKS+b70UL0/YyZyPzzQFj8gcc496KVYvnp3qj8nVt+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1c8I+iMSEPNlZCT8t57u8L6yeuTeKOLs1c8I+iMSEPNlZCT8t57u8L6yeuTeKOLs1c8I+iMSEPNlZCT8t57u8L6yeuTeKOLs1c8I+iMSEPNlZCT8t57u8L6yeuTeKOLuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
+
"achieved_goal": "[[0.3797852 0.01620699 0.5365272 ]\n [0.3797852 0.01620699 0.5365272 ]\n [0.3797852 0.01620699 0.5365272 ]\n [0.3797852 0.01620699 0.5365272 ]]",
|
51 |
+
"desired_goal": "[[ 1.6716969 0.41733938 -0.8769877 ]\n [ 0.23593326 -0.48744875 1.479033 ]\n [ 0.94589823 0.5891149 0.10080171]\n [-0.21157038 1.3317711 -1.7448167 ]]",
|
52 |
+
"observation": "[[ 3.7978521e-01 1.6206995e-02 5.3652722e-01 -2.2937382e-02\n -3.0264395e-04 -2.8158554e-03]\n [ 3.7978521e-01 1.6206995e-02 5.3652722e-01 -2.2937382e-02\n -3.0264395e-04 -2.8158554e-03]\n [ 3.7978521e-01 1.6206995e-02 5.3652722e-01 -2.2937382e-02\n -3.0264395e-04 -2.8158554e-03]\n [ 3.7978521e-01 1.6206995e-02 5.3652722e-01 -2.2937382e-02\n -3.0264395e-04 -2.8158554e-03]]"
|
53 |
+
},
|
54 |
+
"_last_episode_starts": {
|
55 |
+
":type:": "<class 'numpy.ndarray'>",
|
56 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
57 |
+
},
|
58 |
+
"_last_original_obs": {
|
59 |
+
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAowv9vf6EXLylD6w9T+alvAPPGTwwEBw+0cyEvL5Knr0nZYI+ZmmqPNefGz0b1sQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
62 |
+
"desired_goal": "[[-0.12355735 -0.01345944 0.08401421]\n [-0.02025142 0.00938773 0.1524055 ]\n [-0.01621095 -0.077291 0.25467798]\n [ 0.02080221 0.03799423 0.0961115 ]]",
|
63 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
64 |
+
},
|
65 |
+
"_episode_num": 0,
|
66 |
+
"use_sde": false,
|
67 |
+
"sde_sample_freq": -1,
|
68 |
+
"_current_progress_remaining": 0.0,
|
69 |
+
"ep_info_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPQ0YJH3a8b+UhpRSlIwBbJRLMowBdJRHQKCOQJsO5J91fZQoaAZoCWgPQwiOyk3U0lzxv5SGlFKUaBVLMmgWR0CgjgRm03OwdX2UKGgGaAloD0MIwY2ULZL28L+UhpRSlGgVSzJoFkdAoI3Hk1dgOXV9lChoBmgJaA9DCFw7URISafK/lIaUUpRoFUsyaBZHQKCNi/dIoVp1fZQoaAZoCWgPQwi0k8FR8urwv5SGlFKUaBVLMmgWR0CgjxwkgOjJdX2UKGgGaAloD0MIp86j4v+O8b+UhpRSlGgVSzJoFkdAoI7gGB4D93V9lChoBmgJaA9DCE65wrtcRPK/lIaUUpRoFUsyaBZHQKCOoz1schl1fZQoaAZoCWgPQwi1jNR7Kufxv5SGlFKUaBVLMmgWR0CgjmdYnv2HdX2UKGgGaAloD0MIuyh64GOw7b+UhpRSlGgVSzJoFkdAoI/+TvAoHHV9lChoBmgJaA9DCJPF/Uemw/G/lIaUUpRoFUsyaBZHQKCPwlE7W/d1fZQoaAZoCWgPQwg1lxsMddjxv5SGlFKUaBVLMmgWR0Cgj4UnXumadX2UKGgGaAloD0MIhV5/Ep9787+UhpRSlGgVSzJoFkdAoI9JVlwtKHV9lChoBmgJaA9DCCZywRn8/fG/lIaUUpRoFUsyaBZHQKCQ032mHgx1fZQoaAZoCWgPQwgRcXMqGYDuv5SGlFKUaBVLMmgWR0CgkJeBH09RdX2UKGgGaAloD0MICVBTy9Z677+UhpRSlGgVSzJoFkdAoJBancclxHV9lChoBmgJaA9DCEfp0r8k1fG/lIaUUpRoFUsyaBZHQKCQHrdFfAt1fZQoaAZoCWgPQwgIclDCTBv3v5SGlFKUaBVLMmgWR0CgkbPcSGrTdX2UKGgGaAloD0MIyAp+G2K89L+UhpRSlGgVSzJoFkdAoJF4MlTm4nV9lChoBmgJaA9DCPcdw2M/y/G/lIaUUpRoFUsyaBZHQKCROy0rsjV1fZQoaAZoCWgPQwhQqKePwJ/xv5SGlFKUaBVLMmgWR0CgkP9fCyhSdX2UKGgGaAloD0MIWg2Jeyz98r+UhpRSlGgVSzJoFkdAoJKY0hvBJ3V9lChoBmgJaA9DCLaCpiVWRvS/lIaUUpRoFUsyaBZHQKCSXLMcIZ91fZQoaAZoCWgPQwjCL/XzpqLxv5SGlFKUaBVLMmgWR0Cgkh+PBBRidX2UKGgGaAloD0MIPE88ZwsI87+UhpRSlGgVSzJoFkdAoJHj+NtIkXV9lChoBmgJaA9DCOGYZU8CG/W/lIaUUpRoFUsyaBZHQKCTgORT0g91fZQoaAZoCWgPQwjejnBa8GL1v5SGlFKUaBVLMmgWR0Cgk0TMJQchdX2UKGgGaAloD0MIXAUx0LXv8b+UhpRSlGgVSzJoFkdAoJMHn6l+E3V9lChoBmgJaA9DCJy/CYUIOPS/lIaUUpRoFUsyaBZHQKCSy/xlQMx1fZQoaAZoCWgPQwgSbFz/rg/zv5SGlFKUaBVLMmgWR0CglGRmseXBdX2UKGgGaAloD0MIc/Vjk/wI+b+UhpRSlGgVSzJoFkdAoJQogPmPo3V9lChoBmgJaA9DCF+y8WCL3fS/lIaUUpRoFUsyaBZHQKCT666reZZ1fZQoaAZoCWgPQwjo24KlukDxv5SGlFKUaBVLMmgWR0Cgk6/kFOfvdX2UKGgGaAloD0MIhJ84gH7f87+UhpRSlGgVSzJoFkdAoJVEFMZgonV9lChoBmgJaA9DCAddwqG3uPe/lIaUUpRoFUsyaBZHQKCVB/XoTwl1fZQoaAZoCWgPQwg5DOavkDn1v5SGlFKUaBVLMmgWR0CglMr+5vtMdX2UKGgGaAloD0MI8BmJ0Ag277+UhpRSlGgVSzJoFkdAoJSPKU3XI3V9lChoBmgJaA9DCEP+mUF8oPa/lIaUUpRoFUsyaBZHQKCWMDifg751fZQoaAZoCWgPQwj6QzNPrunzv5SGlFKUaBVLMmgWR0CglfPsiSq3dX2UKGgGaAloD0MI8wTCTrHq77+UhpRSlGgVSzJoFkdAoJW3TCtRvXV9lChoBmgJaA9DCCe9b3ztmfG/lIaUUpRoFUsyaBZHQKCVe1w5vLp1fZQoaAZoCWgPQwhu+rMfKSL1v5SGlFKUaBVLMmgWR0CglwcL8aXKdX2UKGgGaAloD0MIj1IJT+i18L+UhpRSlGgVSzJoFkdAoJbK++M6zXV9lChoBmgJaA9DCIvgfyvZ8fC/lIaUUpRoFUsyaBZHQKCWjiSaEzx1fZQoaAZoCWgPQwhjesISD+jyv5SGlFKUaBVLMmgWR0CgllJRGc4HdX2UKGgGaAloD0MIw/ARMSXS8L+UhpRSlGgVSzJoFkdAoJfyXlbNbHV9lChoBmgJaA9DCLx4P26/PPO/lIaUUpRoFUsyaBZHQKCXth99c8l1fZQoaAZoCWgPQwi/9PbnoqHyv5SGlFKUaBVLMmgWR0Cgl3kQf6oEdX2UKGgGaAloD0MIVFbT9USX8L+UhpRSlGgVSzJoFkdAoJc9NJvo/3V9lChoBmgJaA9DCPn2rkFfuvG/lIaUUpRoFUsyaBZHQKCYyLx7RfF1fZQoaAZoCWgPQwiSCI1g43ryv5SGlFKUaBVLMmgWR0CgmIyQo1DTdX2UKGgGaAloD0MIDaoNTkR/8L+UhpRSlGgVSzJoFkdAoJhPlwLmZHV9lChoBmgJaA9DCJ5flKC/UPW/lIaUUpRoFUsyaBZHQKCYE8M/hVF1fZQoaAZoCWgPQwigwhGkUmz1v5SGlFKUaBVLMmgWR0Cgmb3rdFfBdX2UKGgGaAloD0MI5zV2iept8b+UhpRSlGgVSzJoFkdAoJmB3aBZp3V9lChoBmgJaA9DCIDyd++osfG/lIaUUpRoFUsyaBZHQKCZRNxlxwR1fZQoaAZoCWgPQwjEk93M6Ifzv5SGlFKUaBVLMmgWR0CgmQkGzKLbdX2UKGgGaAloD0MIdChDVUxl9b+UhpRSlGgVSzJoFkdAoJqed3B55nV9lChoBmgJaA9DCGPuWkI+aPO/lIaUUpRoFUsyaBZHQKCaYkxh2GJ1fZQoaAZoCWgPQwg8aeGyCpvxv5SGlFKUaBVLMmgWR0CgmiVqveP8dX2UKGgGaAloD0MI0XR2MjhK8b+UhpRSlGgVSzJoFkdAoJnpg7YChnV9lChoBmgJaA9DCMr+eRowyPC/lIaUUpRoFUsyaBZHQKCbjU4JeE91fZQoaAZoCWgPQwhhURGnkyzzv5SGlFKUaBVLMmgWR0Cgm1Fsxfv4dX2UKGgGaAloD0MIvt798V618r+UhpRSlGgVSzJoFkdAoJsUjs2NvXV9lChoBmgJaA9DCFs//WfNz/C/lIaUUpRoFUsyaBZHQKCa2MJhOQB1fZQoaAZoCWgPQwgTglX18vvzv5SGlFKUaBVLMmgWR0CgnGcQI2OydX2UKGgGaAloD0MILVxWYTPA7r+UhpRSlGgVSzJoFkdAoJwq4Bmwq3V9lChoBmgJaA9DCLfT1ohg3PG/lIaUUpRoFUsyaBZHQKCb7cB2fTV1fZQoaAZoCWgPQwhfs1w2Omfvv5SGlFKUaBVLMmgWR0Cgm7HFYMfBdX2UKGgGaAloD0MIBg39E1ys9b+UhpRSlGgVSzJoFkdAoJ1T4Hoou3V9lChoBmgJaA9DCNFXkGYsmu6/lIaUUpRoFUsyaBZHQKCdF9fCyhV1fZQoaAZoCWgPQwgtP3CVJ1D3v5SGlFKUaBVLMmgWR0CgnNqkuYhMdX2UKGgGaAloD0MI0sYRa/Gp+L+UhpRSlGgVSzJoFkdAoJye78Nx2nV9lChoBmgJaA9DCMVwdQDEXfW/lIaUUpRoFUsyaBZHQKCeMRr8BMl1fZQoaAZoCWgPQwg0aVN1j+zwv5SGlFKUaBVLMmgWR0CgnfTc6/7BdX2UKGgGaAloD0MIqKym64mu8r+UhpRSlGgVSzJoFkdAoJ231YhdMXV9lChoBmgJaA9DCIeiQJ/Ik/O/lIaUUpRoFUsyaBZHQKCde+X7cfx1fZQoaAZoCWgPQwgB+n3/5sXyv5SGlFKUaBVLMmgWR0Cgnxk2Hck/dX2UKGgGaAloD0MIdZMYBFYO87+UhpRSlGgVSzJoFkdAoJ7c72criHV9lChoBmgJaA9DCHGQEOULGvi/lIaUUpRoFUsyaBZHQKCeoB3iaRZ1fZQoaAZoCWgPQwg3HJYGftTzv5SGlFKUaBVLMmgWR0CgnmRtgrpadX2UKGgGaAloD0MI/G8lOzaC9L+UhpRSlGgVSzJoFkdAoJ/9Q40dinV9lChoBmgJaA9DCJ1IMNXM2vS/lIaUUpRoFUsyaBZHQKCfwUZeiSJ1fZQoaAZoCWgPQwgH6/8c5gvwv5SGlFKUaBVLMmgWR0Cgn4RgAp8XdX2UKGgGaAloD0MId9oaEYzD8L+UhpRSlGgVSzJoFkdAoJ9I3FUADXV9lChoBmgJaA9DCHqKHCJuTvG/lIaUUpRoFUsyaBZHQKCg48B+4LF1fZQoaAZoCWgPQwiFtpxLcRX1v5SGlFKUaBVLMmgWR0CgoKeqrBCVdX2UKGgGaAloD0MIyxKdZRah8L+UhpRSlGgVSzJoFkdAoKBqvxH5J3V9lChoBmgJaA9DCFA1ejVAqfO/lIaUUpRoFUsyaBZHQKCgLu+AVfx1fZQoaAZoCWgPQwg2V81zRH7zv5SGlFKUaBVLMmgWR0CgocrThHbzdX2UKGgGaAloD0MICD4GK04187+UhpRSlGgVSzJoFkdAoKGOgg5imXV9lChoBmgJaA9DCOSeru5YbO2/lIaUUpRoFUsyaBZHQKChUY51eSl1fZQoaAZoCWgPQwgLQnkfR3Pxv5SGlFKUaBVLMmgWR0CgoRWkJrtWdX2UKGgGaAloD0MIMnbCS3Bq9L+UhpRSlGgVSzJoFkdAoKKs+C9RJnV9lChoBmgJaA9DCO9wOzQsRvS/lIaUUpRoFUsyaBZHQKCicTeO4oZ1fZQoaAZoCWgPQwhjYB3HDxXwv5SGlFKUaBVLMmgWR0CgojQbEP1+dX2UKGgGaAloD0MIFFrW/WPh87+UhpRSlGgVSzJoFkdAoKH4NTcZcnV9lChoBmgJaA9DCM6I0t7gi+2/lIaUUpRoFUsyaBZHQKCjjaFmFrV1fZQoaAZoCWgPQwhYWHA/4IHxv5SGlFKUaBVLMmgWR0Cgo1GRV6u5dX2UKGgGaAloD0MIlC79S1KZ9L+UhpRSlGgVSzJoFkdAoKMVI/Z/TnV9lChoBmgJaA9DCFbT9UTXBfK/lIaUUpRoFUsyaBZHQKCi2biIcip1ZS4="
|
72 |
+
},
|
73 |
+
"ep_success_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
76 |
+
},
|
77 |
+
"_n_updates": 12500,
|
78 |
+
"n_steps": 20,
|
79 |
+
"gamma": 0.99,
|
80 |
+
"gae_lambda": 1.0,
|
81 |
+
"ent_coef": 0.0,
|
82 |
+
"vf_coef": 0.5,
|
83 |
+
"max_grad_norm": 0.5,
|
84 |
+
"normalize_advantage": true
|
85 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc58c4ba93f1503f98cf5c87565043a4099103950baec8c364e8fc8eb3f63ac9
|
3 |
+
size 92400
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:696a41fa19238eeebb9cd3125e0e17231ddad289f182ae9be34389a01fd600f5
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f42c3e4fa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f42c3e4aab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674050336684184805, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANXPCPojEhDzZWQk/NXPCPojEhDzZWQk/NXPCPojEhDzZWQk/NXPCPojEhDzZWQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKvrVP4Kt1T5EgmC/fZhxPuKS+b70UL0/YyZyPzzQFj8gcc496KVYvnp3qj8nVt+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1c8I+iMSEPNlZCT8t57u8L6yeuTeKOLs1c8I+iMSEPNlZCT8t57u8L6yeuTeKOLs1c8I+iMSEPNlZCT8t57u8L6yeuTeKOLs1c8I+iMSEPNlZCT8t57u8L6yeuTeKOLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3797852 0.01620699 0.5365272 ]\n [0.3797852 0.01620699 0.5365272 ]\n [0.3797852 0.01620699 0.5365272 ]\n [0.3797852 0.01620699 0.5365272 ]]", "desired_goal": "[[ 1.6716969 0.41733938 -0.8769877 ]\n [ 0.23593326 -0.48744875 1.479033 ]\n [ 0.94589823 0.5891149 0.10080171]\n [-0.21157038 1.3317711 -1.7448167 ]]", "observation": "[[ 3.7978521e-01 1.6206995e-02 5.3652722e-01 -2.2937382e-02\n -3.0264395e-04 -2.8158554e-03]\n [ 3.7978521e-01 1.6206995e-02 5.3652722e-01 -2.2937382e-02\n -3.0264395e-04 -2.8158554e-03]\n [ 3.7978521e-01 1.6206995e-02 5.3652722e-01 -2.2937382e-02\n -3.0264395e-04 -2.8158554e-03]\n [ 3.7978521e-01 1.6206995e-02 5.3652722e-01 -2.2937382e-02\n -3.0264395e-04 -2.8158554e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAowv9vf6EXLylD6w9T+alvAPPGTwwEBw+0cyEvL5Knr0nZYI+ZmmqPNefGz0b1sQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12355735 -0.01345944 0.08401421]\n [-0.02025142 0.00938773 0.1524055 ]\n [-0.01621095 -0.077291 0.25467798]\n [ 0.02080221 0.03799423 0.0961115 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPQ0YJH3a8b+UhpRSlIwBbJRLMowBdJRHQKCOQJsO5J91fZQoaAZoCWgPQwiOyk3U0lzxv5SGlFKUaBVLMmgWR0CgjgRm03OwdX2UKGgGaAloD0MIwY2ULZL28L+UhpRSlGgVSzJoFkdAoI3Hk1dgOXV9lChoBmgJaA9DCFw7URISafK/lIaUUpRoFUsyaBZHQKCNi/dIoVp1fZQoaAZoCWgPQwi0k8FR8urwv5SGlFKUaBVLMmgWR0CgjxwkgOjJdX2UKGgGaAloD0MIp86j4v+O8b+UhpRSlGgVSzJoFkdAoI7gGB4D93V9lChoBmgJaA9DCE65wrtcRPK/lIaUUpRoFUsyaBZHQKCOoz1schl1fZQoaAZoCWgPQwi1jNR7Kufxv5SGlFKUaBVLMmgWR0CgjmdYnv2HdX2UKGgGaAloD0MIuyh64GOw7b+UhpRSlGgVSzJoFkdAoI/+TvAoHHV9lChoBmgJaA9DCJPF/Uemw/G/lIaUUpRoFUsyaBZHQKCPwlE7W/d1fZQoaAZoCWgPQwg1lxsMddjxv5SGlFKUaBVLMmgWR0Cgj4UnXumadX2UKGgGaAloD0MIhV5/Ep9787+UhpRSlGgVSzJoFkdAoI9JVlwtKHV9lChoBmgJaA9DCCZywRn8/fG/lIaUUpRoFUsyaBZHQKCQ032mHgx1fZQoaAZoCWgPQwgRcXMqGYDuv5SGlFKUaBVLMmgWR0CgkJeBH09RdX2UKGgGaAloD0MICVBTy9Z677+UhpRSlGgVSzJoFkdAoJBancclxHV9lChoBmgJaA9DCEfp0r8k1fG/lIaUUpRoFUsyaBZHQKCQHrdFfAt1fZQoaAZoCWgPQwgIclDCTBv3v5SGlFKUaBVLMmgWR0CgkbPcSGrTdX2UKGgGaAloD0MIyAp+G2K89L+UhpRSlGgVSzJoFkdAoJF4MlTm4nV9lChoBmgJaA9DCPcdw2M/y/G/lIaUUpRoFUsyaBZHQKCROy0rsjV1fZQoaAZoCWgPQwhQqKePwJ/xv5SGlFKUaBVLMmgWR0CgkP9fCyhSdX2UKGgGaAloD0MIWg2Jeyz98r+UhpRSlGgVSzJoFkdAoJKY0hvBJ3V9lChoBmgJaA9DCLaCpiVWRvS/lIaUUpRoFUsyaBZHQKCSXLMcIZ91fZQoaAZoCWgPQwjCL/XzpqLxv5SGlFKUaBVLMmgWR0Cgkh+PBBRidX2UKGgGaAloD0MIPE88ZwsI87+UhpRSlGgVSzJoFkdAoJHj+NtIkXV9lChoBmgJaA9DCOGYZU8CG/W/lIaUUpRoFUsyaBZHQKCTgORT0g91fZQoaAZoCWgPQwjejnBa8GL1v5SGlFKUaBVLMmgWR0Cgk0TMJQchdX2UKGgGaAloD0MIXAUx0LXv8b+UhpRSlGgVSzJoFkdAoJMHn6l+E3V9lChoBmgJaA9DCJy/CYUIOPS/lIaUUpRoFUsyaBZHQKCSy/xlQMx1fZQoaAZoCWgPQwgSbFz/rg/zv5SGlFKUaBVLMmgWR0CglGRmseXBdX2UKGgGaAloD0MIc/Vjk/wI+b+UhpRSlGgVSzJoFkdAoJQogPmPo3V9lChoBmgJaA9DCF+y8WCL3fS/lIaUUpRoFUsyaBZHQKCT666reZZ1fZQoaAZoCWgPQwjo24KlukDxv5SGlFKUaBVLMmgWR0Cgk6/kFOfvdX2UKGgGaAloD0MIhJ84gH7f87+UhpRSlGgVSzJoFkdAoJVEFMZgonV9lChoBmgJaA9DCAddwqG3uPe/lIaUUpRoFUsyaBZHQKCVB/XoTwl1fZQoaAZoCWgPQwg5DOavkDn1v5SGlFKUaBVLMmgWR0CglMr+5vtMdX2UKGgGaAloD0MI8BmJ0Ag277+UhpRSlGgVSzJoFkdAoJSPKU3XI3V9lChoBmgJaA9DCEP+mUF8oPa/lIaUUpRoFUsyaBZHQKCWMDifg751fZQoaAZoCWgPQwj6QzNPrunzv5SGlFKUaBVLMmgWR0CglfPsiSq3dX2UKGgGaAloD0MI8wTCTrHq77+UhpRSlGgVSzJoFkdAoJW3TCtRvXV9lChoBmgJaA9DCCe9b3ztmfG/lIaUUpRoFUsyaBZHQKCVe1w5vLp1fZQoaAZoCWgPQwhu+rMfKSL1v5SGlFKUaBVLMmgWR0CglwcL8aXKdX2UKGgGaAloD0MIj1IJT+i18L+UhpRSlGgVSzJoFkdAoJbK++M6zXV9lChoBmgJaA9DCIvgfyvZ8fC/lIaUUpRoFUsyaBZHQKCWjiSaEzx1fZQoaAZoCWgPQwhjesISD+jyv5SGlFKUaBVLMmgWR0CgllJRGc4HdX2UKGgGaAloD0MIw/ARMSXS8L+UhpRSlGgVSzJoFkdAoJfyXlbNbHV9lChoBmgJaA9DCLx4P26/PPO/lIaUUpRoFUsyaBZHQKCXth99c8l1fZQoaAZoCWgPQwi/9PbnoqHyv5SGlFKUaBVLMmgWR0Cgl3kQf6oEdX2UKGgGaAloD0MIVFbT9USX8L+UhpRSlGgVSzJoFkdAoJc9NJvo/3V9lChoBmgJaA9DCPn2rkFfuvG/lIaUUpRoFUsyaBZHQKCYyLx7RfF1fZQoaAZoCWgPQwiSCI1g43ryv5SGlFKUaBVLMmgWR0CgmIyQo1DTdX2UKGgGaAloD0MIDaoNTkR/8L+UhpRSlGgVSzJoFkdAoJhPlwLmZHV9lChoBmgJaA9DCJ5flKC/UPW/lIaUUpRoFUsyaBZHQKCYE8M/hVF1fZQoaAZoCWgPQwigwhGkUmz1v5SGlFKUaBVLMmgWR0Cgmb3rdFfBdX2UKGgGaAloD0MI5zV2iept8b+UhpRSlGgVSzJoFkdAoJmB3aBZp3V9lChoBmgJaA9DCIDyd++osfG/lIaUUpRoFUsyaBZHQKCZRNxlxwR1fZQoaAZoCWgPQwjEk93M6Ifzv5SGlFKUaBVLMmgWR0CgmQkGzKLbdX2UKGgGaAloD0MIdChDVUxl9b+UhpRSlGgVSzJoFkdAoJqed3B55nV9lChoBmgJaA9DCGPuWkI+aPO/lIaUUpRoFUsyaBZHQKCaYkxh2GJ1fZQoaAZoCWgPQwg8aeGyCpvxv5SGlFKUaBVLMmgWR0CgmiVqveP8dX2UKGgGaAloD0MI0XR2MjhK8b+UhpRSlGgVSzJoFkdAoJnpg7YChnV9lChoBmgJaA9DCMr+eRowyPC/lIaUUpRoFUsyaBZHQKCbjU4JeE91fZQoaAZoCWgPQwhhURGnkyzzv5SGlFKUaBVLMmgWR0Cgm1Fsxfv4dX2UKGgGaAloD0MIvt798V618r+UhpRSlGgVSzJoFkdAoJsUjs2NvXV9lChoBmgJaA9DCFs//WfNz/C/lIaUUpRoFUsyaBZHQKCa2MJhOQB1fZQoaAZoCWgPQwgTglX18vvzv5SGlFKUaBVLMmgWR0CgnGcQI2OydX2UKGgGaAloD0MILVxWYTPA7r+UhpRSlGgVSzJoFkdAoJwq4Bmwq3V9lChoBmgJaA9DCLfT1ohg3PG/lIaUUpRoFUsyaBZHQKCb7cB2fTV1fZQoaAZoCWgPQwhfs1w2Omfvv5SGlFKUaBVLMmgWR0Cgm7HFYMfBdX2UKGgGaAloD0MIBg39E1ys9b+UhpRSlGgVSzJoFkdAoJ1T4Hoou3V9lChoBmgJaA9DCNFXkGYsmu6/lIaUUpRoFUsyaBZHQKCdF9fCyhV1fZQoaAZoCWgPQwgtP3CVJ1D3v5SGlFKUaBVLMmgWR0CgnNqkuYhMdX2UKGgGaAloD0MI0sYRa/Gp+L+UhpRSlGgVSzJoFkdAoJye78Nx2nV9lChoBmgJaA9DCMVwdQDEXfW/lIaUUpRoFUsyaBZHQKCeMRr8BMl1fZQoaAZoCWgPQwg0aVN1j+zwv5SGlFKUaBVLMmgWR0CgnfTc6/7BdX2UKGgGaAloD0MIqKym64mu8r+UhpRSlGgVSzJoFkdAoJ231YhdMXV9lChoBmgJaA9DCIeiQJ/Ik/O/lIaUUpRoFUsyaBZHQKCde+X7cfx1fZQoaAZoCWgPQwgB+n3/5sXyv5SGlFKUaBVLMmgWR0Cgnxk2Hck/dX2UKGgGaAloD0MIdZMYBFYO87+UhpRSlGgVSzJoFkdAoJ7c72criHV9lChoBmgJaA9DCHGQEOULGvi/lIaUUpRoFUsyaBZHQKCeoB3iaRZ1fZQoaAZoCWgPQwg3HJYGftTzv5SGlFKUaBVLMmgWR0CgnmRtgrpadX2UKGgGaAloD0MI/G8lOzaC9L+UhpRSlGgVSzJoFkdAoJ/9Q40dinV9lChoBmgJaA9DCJ1IMNXM2vS/lIaUUpRoFUsyaBZHQKCfwUZeiSJ1fZQoaAZoCWgPQwgH6/8c5gvwv5SGlFKUaBVLMmgWR0Cgn4RgAp8XdX2UKGgGaAloD0MId9oaEYzD8L+UhpRSlGgVSzJoFkdAoJ9I3FUADXV9lChoBmgJaA9DCHqKHCJuTvG/lIaUUpRoFUsyaBZHQKCg48B+4LF1fZQoaAZoCWgPQwiFtpxLcRX1v5SGlFKUaBVLMmgWR0CgoKeqrBCVdX2UKGgGaAloD0MIyxKdZRah8L+UhpRSlGgVSzJoFkdAoKBqvxH5J3V9lChoBmgJaA9DCFA1ejVAqfO/lIaUUpRoFUsyaBZHQKCgLu+AVfx1fZQoaAZoCWgPQwg2V81zRH7zv5SGlFKUaBVLMmgWR0CgocrThHbzdX2UKGgGaAloD0MICD4GK04187+UhpRSlGgVSzJoFkdAoKGOgg5imXV9lChoBmgJaA9DCOSeru5YbO2/lIaUUpRoFUsyaBZHQKChUY51eSl1fZQoaAZoCWgPQwgLQnkfR3Pxv5SGlFKUaBVLMmgWR0CgoRWkJrtWdX2UKGgGaAloD0MIMnbCS3Bq9L+UhpRSlGgVSzJoFkdAoKKs+C9RJnV9lChoBmgJaA9DCO9wOzQsRvS/lIaUUpRoFUsyaBZHQKCicTeO4oZ1fZQoaAZoCWgPQwhjYB3HDxXwv5SGlFKUaBVLMmgWR0CgojQbEP1+dX2UKGgGaAloD0MIFFrW/WPh87+UhpRSlGgVSzJoFkdAoKH4NTcZcnV9lChoBmgJaA9DCM6I0t7gi+2/lIaUUpRoFUsyaBZHQKCjjaFmFrV1fZQoaAZoCWgPQwhYWHA/4IHxv5SGlFKUaBVLMmgWR0Cgo1GRV6u5dX2UKGgGaAloD0MIlC79S1KZ9L+UhpRSlGgVSzJoFkdAoKMVI/Z/TnV9lChoBmgJaA9DCFbT9UTXBfK/lIaUUpRoFUsyaBZHQKCi2biIcip1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 20, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (712 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.8175539604155346, "std_reward": 0.146362454628815, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T14:34:30.630953"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fe2e5c3fa35cddc096ab7b4fe211efe981350f229afc29cd49aec8734ac09fa
|
3 |
+
size 3212
|