Upload model.ipynb
Browse files- model.ipynb +1593 -0
model.ipynb
ADDED
@@ -0,0 +1,1593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "ec70045d",
|
7 |
+
"metadata": {
|
8 |
+
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
|
9 |
+
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
|
10 |
+
"execution": {
|
11 |
+
"iopub.execute_input": "2024-02-28T21:15:40.650918Z",
|
12 |
+
"iopub.status.busy": "2024-02-28T21:15:40.650589Z",
|
13 |
+
"iopub.status.idle": "2024-02-28T21:15:41.502437Z",
|
14 |
+
"shell.execute_reply": "2024-02-28T21:15:41.501426Z"
|
15 |
+
},
|
16 |
+
"papermill": {
|
17 |
+
"duration": 0.87031,
|
18 |
+
"end_time": "2024-02-28T21:15:41.504554",
|
19 |
+
"exception": false,
|
20 |
+
"start_time": "2024-02-28T21:15:40.634244",
|
21 |
+
"status": "completed"
|
22 |
+
},
|
23 |
+
"tags": []
|
24 |
+
},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"# This Python 3 environment comes with many helpful analytics libraries installed\n",
|
28 |
+
"# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n",
|
29 |
+
"# For example, here's several helpful packages to load\n",
|
30 |
+
"\n",
|
31 |
+
"import numpy as np # linear algebra\n",
|
32 |
+
"import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
|
33 |
+
"\n",
|
34 |
+
"# Input data files are available in the read-only \"../input/\" directory\n",
|
35 |
+
"# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n",
|
36 |
+
"\n",
|
37 |
+
"import os\n",
|
38 |
+
"for dirname, _, filenames in os.walk('/kaggle/input'):\n",
|
39 |
+
" for filename in filenames:\n",
|
40 |
+
" print(os.path.join(dirname, filename))\n",
|
41 |
+
"\n",
|
42 |
+
"# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\"\n",
|
43 |
+
"# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": null,
|
49 |
+
"id": "31b2bdbf",
|
50 |
+
"metadata": {
|
51 |
+
"execution": {
|
52 |
+
"iopub.execute_input": "2024-02-28T21:15:41.536451Z",
|
53 |
+
"iopub.status.busy": "2024-02-28T21:15:41.536047Z",
|
54 |
+
"iopub.status.idle": "2024-02-28T21:15:42.592902Z",
|
55 |
+
"shell.execute_reply": "2024-02-28T21:15:42.592121Z"
|
56 |
+
},
|
57 |
+
"papermill": {
|
58 |
+
"duration": 1.07523,
|
59 |
+
"end_time": "2024-02-28T21:15:42.595268",
|
60 |
+
"exception": false,
|
61 |
+
"start_time": "2024-02-28T21:15:41.520038",
|
62 |
+
"status": "completed"
|
63 |
+
},
|
64 |
+
"tags": []
|
65 |
+
},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"df = pd.read_csv(\n",
|
69 |
+
" \"/kaggle/input/personal-key-indicators-of-heart-disease/2020/heart_2020_cleaned.csv\")"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": null,
|
75 |
+
"id": "a12bd286",
|
76 |
+
"metadata": {
|
77 |
+
"execution": {
|
78 |
+
"iopub.execute_input": "2024-02-28T21:15:42.629222Z",
|
79 |
+
"iopub.status.busy": "2024-02-28T21:15:42.628916Z",
|
80 |
+
"iopub.status.idle": "2024-02-28T21:15:43.061965Z",
|
81 |
+
"shell.execute_reply": "2024-02-28T21:15:43.061012Z"
|
82 |
+
},
|
83 |
+
"papermill": {
|
84 |
+
"duration": 0.453304,
|
85 |
+
"end_time": "2024-02-28T21:15:43.064364",
|
86 |
+
"exception": false,
|
87 |
+
"start_time": "2024-02-28T21:15:42.611060",
|
88 |
+
"status": "completed"
|
89 |
+
},
|
90 |
+
"tags": []
|
91 |
+
},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"df.isnull().sum()"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": null,
|
100 |
+
"id": "98b4a85f",
|
101 |
+
"metadata": {
|
102 |
+
"execution": {
|
103 |
+
"iopub.execute_input": "2024-02-28T21:15:43.098384Z",
|
104 |
+
"iopub.status.busy": "2024-02-28T21:15:43.098077Z",
|
105 |
+
"iopub.status.idle": "2024-02-28T21:15:43.549973Z",
|
106 |
+
"shell.execute_reply": "2024-02-28T21:15:43.548934Z"
|
107 |
+
},
|
108 |
+
"papermill": {
|
109 |
+
"duration": 0.470772,
|
110 |
+
"end_time": "2024-02-28T21:15:43.552722",
|
111 |
+
"exception": false,
|
112 |
+
"start_time": "2024-02-28T21:15:43.081950",
|
113 |
+
"status": "completed"
|
114 |
+
},
|
115 |
+
"tags": []
|
116 |
+
},
|
117 |
+
"outputs": [],
|
118 |
+
"source": [
|
119 |
+
"df = pd.get_dummies(df, columns=['Smoking', 'AlcoholDrinking', 'Sex', 'AgeCategory', 'Race',\n",
|
120 |
+
" 'Diabetic', 'PhysicalActivity', 'GenHealth', 'Asthma', 'KidneyDisease', 'SkinCancer'])"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": null,
|
126 |
+
"id": "4a49bbd7",
|
127 |
+
"metadata": {
|
128 |
+
"execution": {
|
129 |
+
"iopub.execute_input": "2024-02-28T21:15:43.590333Z",
|
130 |
+
"iopub.status.busy": "2024-02-28T21:15:43.589967Z",
|
131 |
+
"iopub.status.idle": "2024-02-28T21:15:43.596311Z",
|
132 |
+
"shell.execute_reply": "2024-02-28T21:15:43.595602Z"
|
133 |
+
},
|
134 |
+
"papermill": {
|
135 |
+
"duration": 0.026491,
|
136 |
+
"end_time": "2024-02-28T21:15:43.598298",
|
137 |
+
"exception": false,
|
138 |
+
"start_time": "2024-02-28T21:15:43.571807",
|
139 |
+
"status": "completed"
|
140 |
+
},
|
141 |
+
"tags": []
|
142 |
+
},
|
143 |
+
"outputs": [],
|
144 |
+
"source": [
|
145 |
+
"df['BMI'] = df['BMI'] / (df['BMI'] ** 2)"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"id": "8a1121c3",
|
152 |
+
"metadata": {
|
153 |
+
"execution": {
|
154 |
+
"iopub.execute_input": "2024-02-28T21:15:43.629024Z",
|
155 |
+
"iopub.status.busy": "2024-02-28T21:15:43.628731Z",
|
156 |
+
"iopub.status.idle": "2024-02-28T21:15:45.174952Z",
|
157 |
+
"shell.execute_reply": "2024-02-28T21:15:45.173525Z"
|
158 |
+
},
|
159 |
+
"papermill": {
|
160 |
+
"duration": 1.563564,
|
161 |
+
"end_time": "2024-02-28T21:15:45.176760",
|
162 |
+
"exception": true,
|
163 |
+
"start_time": "2024-02-28T21:15:43.613196",
|
164 |
+
"status": "failed"
|
165 |
+
},
|
166 |
+
"tags": []
|
167 |
+
},
|
168 |
+
"outputs": [],
|
169 |
+
"source": [
|
170 |
+
"from sklearn.preprocessing import MinMaxScaler\n",
|
171 |
+
"numerical_columns = ['BMI', 'Stroke', 'PhysicalHealth',\n",
|
172 |
+
" 'MentalHealth', 'DiffWalking', 'SleepTime']\n",
|
173 |
+
"scaler = MinMaxScaler()\n",
|
174 |
+
"df[numerical_columns] = scaler.fit_transform(df[numerical_columns])"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "code",
|
179 |
+
"execution_count": null,
|
180 |
+
"id": "c34257e5",
|
181 |
+
"metadata": {
|
182 |
+
"execution": {
|
183 |
+
"iopub.execute_input": "2024-02-28T20:31:24.347783Z",
|
184 |
+
"iopub.status.busy": "2024-02-28T20:31:24.347070Z",
|
185 |
+
"iopub.status.idle": "2024-02-28T20:31:24.504857Z",
|
186 |
+
"shell.execute_reply": "2024-02-28T20:31:24.503875Z",
|
187 |
+
"shell.execute_reply.started": "2024-02-28T20:31:24.347750Z"
|
188 |
+
},
|
189 |
+
"papermill": {
|
190 |
+
"duration": null,
|
191 |
+
"end_time": null,
|
192 |
+
"exception": null,
|
193 |
+
"start_time": null,
|
194 |
+
"status": "pending"
|
195 |
+
},
|
196 |
+
"tags": []
|
197 |
+
},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"for column in df.columns:\n",
|
201 |
+
" print(column, df[column].unique())"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"cell_type": "code",
|
206 |
+
"execution_count": null,
|
207 |
+
"id": "305666d0",
|
208 |
+
"metadata": {
|
209 |
+
"execution": {
|
210 |
+
"iopub.execute_input": "2024-02-28T20:31:26.899524Z",
|
211 |
+
"iopub.status.busy": "2024-02-28T20:31:26.899205Z",
|
212 |
+
"iopub.status.idle": "2024-02-28T20:31:26.961477Z",
|
213 |
+
"shell.execute_reply": "2024-02-28T20:31:26.960639Z",
|
214 |
+
"shell.execute_reply.started": "2024-02-28T20:31:26.899502Z"
|
215 |
+
},
|
216 |
+
"papermill": {
|
217 |
+
"duration": null,
|
218 |
+
"end_time": null,
|
219 |
+
"exception": null,
|
220 |
+
"start_time": null,
|
221 |
+
"status": "pending"
|
222 |
+
},
|
223 |
+
"tags": []
|
224 |
+
},
|
225 |
+
"outputs": [],
|
226 |
+
"source": [
|
227 |
+
"df['Stroke'] = df['Stroke'].map({'No': 0, 'Yes': 1})\n",
|
228 |
+
"df['DiffWalking'] = df['DiffWalking'].map({'No': 0, 'Yes': 1})"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": null,
|
234 |
+
"id": "b2cc4716",
|
235 |
+
"metadata": {
|
236 |
+
"execution": {
|
237 |
+
"iopub.execute_input": "2024-02-28T20:31:28.914217Z",
|
238 |
+
"iopub.status.busy": "2024-02-28T20:31:28.913857Z",
|
239 |
+
"iopub.status.idle": "2024-02-28T20:31:28.945954Z",
|
240 |
+
"shell.execute_reply": "2024-02-28T20:31:28.944829Z",
|
241 |
+
"shell.execute_reply.started": "2024-02-28T20:31:28.914181Z"
|
242 |
+
},
|
243 |
+
"papermill": {
|
244 |
+
"duration": null,
|
245 |
+
"end_time": null,
|
246 |
+
"exception": null,
|
247 |
+
"start_time": null,
|
248 |
+
"status": "pending"
|
249 |
+
},
|
250 |
+
"tags": []
|
251 |
+
},
|
252 |
+
"outputs": [],
|
253 |
+
"source": [
|
254 |
+
"scaler = MinMaxScaler()\n",
|
255 |
+
"numerical_columns = ['BMI', 'PhysicalHealth',\n",
|
256 |
+
" 'MentalHealth', 'DiffWalking', 'SleepTime']\n",
|
257 |
+
"df[numerical_columns] = scaler.fit_transform(df[numerical_columns])"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": null,
|
263 |
+
"id": "15944d03",
|
264 |
+
"metadata": {
|
265 |
+
"execution": {
|
266 |
+
"iopub.execute_input": "2024-02-28T20:31:30.518053Z",
|
267 |
+
"iopub.status.busy": "2024-02-28T20:31:30.517356Z",
|
268 |
+
"iopub.status.idle": "2024-02-28T20:31:30.592331Z",
|
269 |
+
"shell.execute_reply": "2024-02-28T20:31:30.591365Z",
|
270 |
+
"shell.execute_reply.started": "2024-02-28T20:31:30.518018Z"
|
271 |
+
},
|
272 |
+
"papermill": {
|
273 |
+
"duration": null,
|
274 |
+
"end_time": null,
|
275 |
+
"exception": null,
|
276 |
+
"start_time": null,
|
277 |
+
"status": "pending"
|
278 |
+
},
|
279 |
+
"tags": []
|
280 |
+
},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"z_scores = df[numerical_columns].apply(lambda x: (x - x.mean()) / x.std())\n",
|
284 |
+
"outliers = (z_scores > 3) | (z_scores < -3)\n",
|
285 |
+
"df = df[~outliers.any(axis=1)]"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": null,
|
291 |
+
"id": "b3c04332",
|
292 |
+
"metadata": {
|
293 |
+
"execution": {
|
294 |
+
"iopub.execute_input": "2024-02-28T20:31:32.877312Z",
|
295 |
+
"iopub.status.busy": "2024-02-28T20:31:32.876991Z",
|
296 |
+
"iopub.status.idle": "2024-02-28T20:31:32.923278Z",
|
297 |
+
"shell.execute_reply": "2024-02-28T20:31:32.922285Z",
|
298 |
+
"shell.execute_reply.started": "2024-02-28T20:31:32.877287Z"
|
299 |
+
},
|
300 |
+
"papermill": {
|
301 |
+
"duration": null,
|
302 |
+
"end_time": null,
|
303 |
+
"exception": null,
|
304 |
+
"start_time": null,
|
305 |
+
"status": "pending"
|
306 |
+
},
|
307 |
+
"tags": []
|
308 |
+
},
|
309 |
+
"outputs": [],
|
310 |
+
"source": [
|
311 |
+
"print(df.isnull().sum())"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"execution_count": null,
|
317 |
+
"id": "f883f424",
|
318 |
+
"metadata": {
|
319 |
+
"execution": {
|
320 |
+
"iopub.execute_input": "2024-02-28T20:31:35.118412Z",
|
321 |
+
"iopub.status.busy": "2024-02-28T20:31:35.118046Z",
|
322 |
+
"iopub.status.idle": "2024-02-28T20:31:35.138194Z",
|
323 |
+
"shell.execute_reply": "2024-02-28T20:31:35.137356Z",
|
324 |
+
"shell.execute_reply.started": "2024-02-28T20:31:35.118385Z"
|
325 |
+
},
|
326 |
+
"papermill": {
|
327 |
+
"duration": null,
|
328 |
+
"end_time": null,
|
329 |
+
"exception": null,
|
330 |
+
"start_time": null,
|
331 |
+
"status": "pending"
|
332 |
+
},
|
333 |
+
"tags": []
|
334 |
+
},
|
335 |
+
"outputs": [],
|
336 |
+
"source": [
|
337 |
+
"X = df.drop(columns=['HeartDisease'])\n",
|
338 |
+
"y = df['HeartDisease']"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": null,
|
344 |
+
"id": "937f456d",
|
345 |
+
"metadata": {
|
346 |
+
"execution": {
|
347 |
+
"iopub.execute_input": "2024-02-28T20:31:36.921083Z",
|
348 |
+
"iopub.status.busy": "2024-02-28T20:31:36.920460Z",
|
349 |
+
"iopub.status.idle": "2024-02-28T20:31:37.092675Z",
|
350 |
+
"shell.execute_reply": "2024-02-28T20:31:37.091807Z",
|
351 |
+
"shell.execute_reply.started": "2024-02-28T20:31:36.921053Z"
|
352 |
+
},
|
353 |
+
"papermill": {
|
354 |
+
"duration": null,
|
355 |
+
"end_time": null,
|
356 |
+
"exception": null,
|
357 |
+
"start_time": null,
|
358 |
+
"status": "pending"
|
359 |
+
},
|
360 |
+
"tags": []
|
361 |
+
},
|
362 |
+
"outputs": [],
|
363 |
+
"source": [
|
364 |
+
"from sklearn.model_selection import train_test_split # Add this import statement\n",
|
365 |
+
"X_train, X_test, y_train, y_test = train_test_split(\n",
|
366 |
+
" X, y, test_size=0.2, random_state=42)"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"cell_type": "markdown",
|
371 |
+
"id": "d908667b",
|
372 |
+
"metadata": {
|
373 |
+
"papermill": {
|
374 |
+
"duration": null,
|
375 |
+
"end_time": null,
|
376 |
+
"exception": null,
|
377 |
+
"start_time": null,
|
378 |
+
"status": "pending"
|
379 |
+
},
|
380 |
+
"tags": []
|
381 |
+
},
|
382 |
+
"source": [
|
383 |
+
"# Logistic regression\n"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"execution_count": null,
|
389 |
+
"id": "d2c46021",
|
390 |
+
"metadata": {
|
391 |
+
"execution": {
|
392 |
+
"iopub.execute_input": "2024-02-28T20:31:40.429477Z",
|
393 |
+
"iopub.status.busy": "2024-02-28T20:31:40.428714Z",
|
394 |
+
"iopub.status.idle": "2024-02-28T20:31:40.563938Z",
|
395 |
+
"shell.execute_reply": "2024-02-28T20:31:40.563215Z",
|
396 |
+
"shell.execute_reply.started": "2024-02-28T20:31:40.429444Z"
|
397 |
+
},
|
398 |
+
"papermill": {
|
399 |
+
"duration": null,
|
400 |
+
"end_time": null,
|
401 |
+
"exception": null,
|
402 |
+
"start_time": null,
|
403 |
+
"status": "pending"
|
404 |
+
},
|
405 |
+
"tags": []
|
406 |
+
},
|
407 |
+
"outputs": [],
|
408 |
+
"source": [
|
409 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
410 |
+
"from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n",
|
411 |
+
"model = LogisticRegression()"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"cell_type": "code",
|
416 |
+
"execution_count": null,
|
417 |
+
"id": "57788a5b",
|
418 |
+
"metadata": {
|
419 |
+
"execution": {
|
420 |
+
"iopub.execute_input": "2024-02-28T20:31:43.108928Z",
|
421 |
+
"iopub.status.busy": "2024-02-28T20:31:43.108194Z",
|
422 |
+
"iopub.status.idle": "2024-02-28T20:31:46.611293Z",
|
423 |
+
"shell.execute_reply": "2024-02-28T20:31:46.609836Z",
|
424 |
+
"shell.execute_reply.started": "2024-02-28T20:31:43.108893Z"
|
425 |
+
},
|
426 |
+
"papermill": {
|
427 |
+
"duration": null,
|
428 |
+
"end_time": null,
|
429 |
+
"exception": null,
|
430 |
+
"start_time": null,
|
431 |
+
"status": "pending"
|
432 |
+
},
|
433 |
+
"tags": []
|
434 |
+
},
|
435 |
+
"outputs": [],
|
436 |
+
"source": [
|
437 |
+
"model.fit(X_train, y_train)"
|
438 |
+
]
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"cell_type": "code",
|
442 |
+
"execution_count": null,
|
443 |
+
"id": "5a09075d",
|
444 |
+
"metadata": {
|
445 |
+
"execution": {
|
446 |
+
"iopub.execute_input": "2024-02-28T20:31:53.227765Z",
|
447 |
+
"iopub.status.busy": "2024-02-28T20:31:53.227012Z",
|
448 |
+
"iopub.status.idle": "2024-02-28T20:31:53.251316Z",
|
449 |
+
"shell.execute_reply": "2024-02-28T20:31:53.250025Z",
|
450 |
+
"shell.execute_reply.started": "2024-02-28T20:31:53.227730Z"
|
451 |
+
},
|
452 |
+
"papermill": {
|
453 |
+
"duration": null,
|
454 |
+
"end_time": null,
|
455 |
+
"exception": null,
|
456 |
+
"start_time": null,
|
457 |
+
"status": "pending"
|
458 |
+
},
|
459 |
+
"tags": []
|
460 |
+
},
|
461 |
+
"outputs": [],
|
462 |
+
"source": [
|
463 |
+
"y_pred = model.predict(X_test)"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"cell_type": "code",
|
468 |
+
"execution_count": null,
|
469 |
+
"id": "025c02d6",
|
470 |
+
"metadata": {
|
471 |
+
"execution": {
|
472 |
+
"iopub.execute_input": "2024-02-28T20:31:55.958835Z",
|
473 |
+
"iopub.status.busy": "2024-02-28T20:31:55.957996Z",
|
474 |
+
"iopub.status.idle": "2024-02-28T20:31:56.206159Z",
|
475 |
+
"shell.execute_reply": "2024-02-28T20:31:56.205249Z",
|
476 |
+
"shell.execute_reply.started": "2024-02-28T20:31:55.958798Z"
|
477 |
+
},
|
478 |
+
"papermill": {
|
479 |
+
"duration": null,
|
480 |
+
"end_time": null,
|
481 |
+
"exception": null,
|
482 |
+
"start_time": null,
|
483 |
+
"status": "pending"
|
484 |
+
},
|
485 |
+
"tags": []
|
486 |
+
},
|
487 |
+
"outputs": [],
|
488 |
+
"source": [
|
489 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
490 |
+
"print(\"Accuracy:\", accuracy)"
|
491 |
+
]
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"cell_type": "markdown",
|
495 |
+
"id": "30f6e656",
|
496 |
+
"metadata": {
|
497 |
+
"papermill": {
|
498 |
+
"duration": null,
|
499 |
+
"end_time": null,
|
500 |
+
"exception": null,
|
501 |
+
"start_time": null,
|
502 |
+
"status": "pending"
|
503 |
+
},
|
504 |
+
"tags": []
|
505 |
+
},
|
506 |
+
"source": [
|
507 |
+
"# KNN\n"
|
508 |
+
]
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"cell_type": "code",
|
512 |
+
"execution_count": null,
|
513 |
+
"id": "53935959",
|
514 |
+
"metadata": {
|
515 |
+
"execution": {
|
516 |
+
"iopub.execute_input": "2024-02-28T20:31:59.594538Z",
|
517 |
+
"iopub.status.busy": "2024-02-28T20:31:59.593874Z",
|
518 |
+
"iopub.status.idle": "2024-02-28T20:31:59.644704Z",
|
519 |
+
"shell.execute_reply": "2024-02-28T20:31:59.643728Z",
|
520 |
+
"shell.execute_reply.started": "2024-02-28T20:31:59.594507Z"
|
521 |
+
},
|
522 |
+
"papermill": {
|
523 |
+
"duration": null,
|
524 |
+
"end_time": null,
|
525 |
+
"exception": null,
|
526 |
+
"start_time": null,
|
527 |
+
"status": "pending"
|
528 |
+
},
|
529 |
+
"tags": []
|
530 |
+
},
|
531 |
+
"outputs": [],
|
532 |
+
"source": [
|
533 |
+
"from sklearn.neighbors import KNeighborsClassifier\n",
|
534 |
+
"knn_model = KNeighborsClassifier(n_neighbors=5)"
|
535 |
+
]
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"cell_type": "code",
|
539 |
+
"execution_count": null,
|
540 |
+
"id": "db4deede",
|
541 |
+
"metadata": {
|
542 |
+
"execution": {
|
543 |
+
"iopub.execute_input": "2024-02-28T20:32:05.418662Z",
|
544 |
+
"iopub.status.busy": "2024-02-28T20:32:05.417912Z",
|
545 |
+
"iopub.status.idle": "2024-02-28T20:32:06.188877Z",
|
546 |
+
"shell.execute_reply": "2024-02-28T20:32:06.187632Z",
|
547 |
+
"shell.execute_reply.started": "2024-02-28T20:32:05.418629Z"
|
548 |
+
},
|
549 |
+
"papermill": {
|
550 |
+
"duration": null,
|
551 |
+
"end_time": null,
|
552 |
+
"exception": null,
|
553 |
+
"start_time": null,
|
554 |
+
"status": "pending"
|
555 |
+
},
|
556 |
+
"tags": []
|
557 |
+
},
|
558 |
+
"outputs": [],
|
559 |
+
"source": [
|
560 |
+
"knn_model.fit(X_train, y_train)"
|
561 |
+
]
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"cell_type": "code",
|
565 |
+
"execution_count": null,
|
566 |
+
"id": "ab01ea0d",
|
567 |
+
"metadata": {
|
568 |
+
"execution": {
|
569 |
+
"iopub.execute_input": "2024-02-28T20:32:08.060681Z",
|
570 |
+
"iopub.status.busy": "2024-02-28T20:32:08.059727Z",
|
571 |
+
"iopub.status.idle": "2024-02-28T20:32:48.065781Z",
|
572 |
+
"shell.execute_reply": "2024-02-28T20:32:48.064651Z",
|
573 |
+
"shell.execute_reply.started": "2024-02-28T20:32:08.060638Z"
|
574 |
+
},
|
575 |
+
"papermill": {
|
576 |
+
"duration": null,
|
577 |
+
"end_time": null,
|
578 |
+
"exception": null,
|
579 |
+
"start_time": null,
|
580 |
+
"status": "pending"
|
581 |
+
},
|
582 |
+
"tags": []
|
583 |
+
},
|
584 |
+
"outputs": [],
|
585 |
+
"source": [
|
586 |
+
"knn_y_pred = knn_model.predict(X_test)\n",
|
587 |
+
"knn_accuracy = accuracy_score(y_test, knn_y_pred)\n",
|
588 |
+
"print(\"KNN Accuracy:\", knn_accuracy)"
|
589 |
+
]
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"cell_type": "markdown",
|
593 |
+
"id": "fbfb3f58",
|
594 |
+
"metadata": {
|
595 |
+
"papermill": {
|
596 |
+
"duration": null,
|
597 |
+
"end_time": null,
|
598 |
+
"exception": null,
|
599 |
+
"start_time": null,
|
600 |
+
"status": "pending"
|
601 |
+
},
|
602 |
+
"tags": []
|
603 |
+
},
|
604 |
+
"source": [
|
605 |
+
"# Naive Bayes\n"
|
606 |
+
]
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"cell_type": "code",
|
610 |
+
"execution_count": null,
|
611 |
+
"id": "59c6dc70",
|
612 |
+
"metadata": {
|
613 |
+
"execution": {
|
614 |
+
"iopub.execute_input": "2024-02-28T20:33:05.648469Z",
|
615 |
+
"iopub.status.busy": "2024-02-28T20:33:05.647771Z",
|
616 |
+
"iopub.status.idle": "2024-02-28T20:33:05.655089Z",
|
617 |
+
"shell.execute_reply": "2024-02-28T20:33:05.653963Z",
|
618 |
+
"shell.execute_reply.started": "2024-02-28T20:33:05.648437Z"
|
619 |
+
},
|
620 |
+
"papermill": {
|
621 |
+
"duration": null,
|
622 |
+
"end_time": null,
|
623 |
+
"exception": null,
|
624 |
+
"start_time": null,
|
625 |
+
"status": "pending"
|
626 |
+
},
|
627 |
+
"tags": []
|
628 |
+
},
|
629 |
+
"outputs": [],
|
630 |
+
"source": [
|
631 |
+
"from sklearn.naive_bayes import GaussianNB\n",
|
632 |
+
"nb_model = GaussianNB()"
|
633 |
+
]
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"cell_type": "code",
|
637 |
+
"execution_count": null,
|
638 |
+
"id": "bde5534f",
|
639 |
+
"metadata": {
|
640 |
+
"execution": {
|
641 |
+
"iopub.execute_input": "2024-02-28T20:33:07.367575Z",
|
642 |
+
"iopub.status.busy": "2024-02-28T20:33:07.366646Z",
|
643 |
+
"iopub.status.idle": "2024-02-28T20:33:08.279224Z",
|
644 |
+
"shell.execute_reply": "2024-02-28T20:33:08.278331Z",
|
645 |
+
"shell.execute_reply.started": "2024-02-28T20:33:07.367527Z"
|
646 |
+
},
|
647 |
+
"papermill": {
|
648 |
+
"duration": null,
|
649 |
+
"end_time": null,
|
650 |
+
"exception": null,
|
651 |
+
"start_time": null,
|
652 |
+
"status": "pending"
|
653 |
+
},
|
654 |
+
"tags": []
|
655 |
+
},
|
656 |
+
"outputs": [],
|
657 |
+
"source": [
|
658 |
+
"nb_model.fit(X_train, y_train)"
|
659 |
+
]
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"cell_type": "code",
|
663 |
+
"execution_count": null,
|
664 |
+
"id": "13d88c07",
|
665 |
+
"metadata": {
|
666 |
+
"execution": {
|
667 |
+
"iopub.execute_input": "2024-02-28T20:33:11.507456Z",
|
668 |
+
"iopub.status.busy": "2024-02-28T20:33:11.506783Z",
|
669 |
+
"iopub.status.idle": "2024-02-28T20:33:11.557327Z",
|
670 |
+
"shell.execute_reply": "2024-02-28T20:33:11.556531Z",
|
671 |
+
"shell.execute_reply.started": "2024-02-28T20:33:11.507420Z"
|
672 |
+
},
|
673 |
+
"papermill": {
|
674 |
+
"duration": null,
|
675 |
+
"end_time": null,
|
676 |
+
"exception": null,
|
677 |
+
"start_time": null,
|
678 |
+
"status": "pending"
|
679 |
+
},
|
680 |
+
"tags": []
|
681 |
+
},
|
682 |
+
"outputs": [],
|
683 |
+
"source": [
|
684 |
+
"nb_y_pred = nb_model.predict(X_test)"
|
685 |
+
]
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"cell_type": "code",
|
689 |
+
"execution_count": null,
|
690 |
+
"id": "92e9d434",
|
691 |
+
"metadata": {
|
692 |
+
"execution": {
|
693 |
+
"iopub.execute_input": "2024-02-28T20:33:17.627887Z",
|
694 |
+
"iopub.status.busy": "2024-02-28T20:33:17.627102Z",
|
695 |
+
"iopub.status.idle": "2024-02-28T20:33:17.872462Z",
|
696 |
+
"shell.execute_reply": "2024-02-28T20:33:17.871605Z",
|
697 |
+
"shell.execute_reply.started": "2024-02-28T20:33:17.627855Z"
|
698 |
+
},
|
699 |
+
"papermill": {
|
700 |
+
"duration": null,
|
701 |
+
"end_time": null,
|
702 |
+
"exception": null,
|
703 |
+
"start_time": null,
|
704 |
+
"status": "pending"
|
705 |
+
},
|
706 |
+
"tags": []
|
707 |
+
},
|
708 |
+
"outputs": [],
|
709 |
+
"source": [
|
710 |
+
"nb_accuracy = accuracy_score(y_test, nb_y_pred)\n",
|
711 |
+
"print(\"Naive Bayes Accuracy:\", nb_accuracy)"
|
712 |
+
]
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"cell_type": "markdown",
|
716 |
+
"id": "32075ad4",
|
717 |
+
"metadata": {
|
718 |
+
"papermill": {
|
719 |
+
"duration": null,
|
720 |
+
"end_time": null,
|
721 |
+
"exception": null,
|
722 |
+
"start_time": null,
|
723 |
+
"status": "pending"
|
724 |
+
},
|
725 |
+
"tags": []
|
726 |
+
},
|
727 |
+
"source": [
|
728 |
+
"# Decision Tree\n"
|
729 |
+
]
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"cell_type": "code",
|
733 |
+
"execution_count": null,
|
734 |
+
"id": "65c78c41",
|
735 |
+
"metadata": {
|
736 |
+
"execution": {
|
737 |
+
"iopub.execute_input": "2024-02-28T20:33:20.370792Z",
|
738 |
+
"iopub.status.busy": "2024-02-28T20:33:20.370439Z",
|
739 |
+
"iopub.status.idle": "2024-02-28T20:33:20.399395Z",
|
740 |
+
"shell.execute_reply": "2024-02-28T20:33:20.398573Z",
|
741 |
+
"shell.execute_reply.started": "2024-02-28T20:33:20.370766Z"
|
742 |
+
},
|
743 |
+
"papermill": {
|
744 |
+
"duration": null,
|
745 |
+
"end_time": null,
|
746 |
+
"exception": null,
|
747 |
+
"start_time": null,
|
748 |
+
"status": "pending"
|
749 |
+
},
|
750 |
+
"tags": []
|
751 |
+
},
|
752 |
+
"outputs": [],
|
753 |
+
"source": [
|
754 |
+
"from sklearn.tree import DecisionTreeClassifier\n",
|
755 |
+
"dt_model = DecisionTreeClassifier(random_state=42)"
|
756 |
+
]
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"cell_type": "code",
|
760 |
+
"execution_count": null,
|
761 |
+
"id": "a818077a",
|
762 |
+
"metadata": {
|
763 |
+
"execution": {
|
764 |
+
"iopub.execute_input": "2024-02-28T20:33:24.678143Z",
|
765 |
+
"iopub.status.busy": "2024-02-28T20:33:24.677822Z",
|
766 |
+
"iopub.status.idle": "2024-02-28T20:33:28.015444Z",
|
767 |
+
"shell.execute_reply": "2024-02-28T20:33:28.014553Z",
|
768 |
+
"shell.execute_reply.started": "2024-02-28T20:33:24.678119Z"
|
769 |
+
},
|
770 |
+
"papermill": {
|
771 |
+
"duration": null,
|
772 |
+
"end_time": null,
|
773 |
+
"exception": null,
|
774 |
+
"start_time": null,
|
775 |
+
"status": "pending"
|
776 |
+
},
|
777 |
+
"tags": []
|
778 |
+
},
|
779 |
+
"outputs": [],
|
780 |
+
"source": [
|
781 |
+
"dt_model.fit(X_train, y_train)"
|
782 |
+
]
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"cell_type": "code",
|
786 |
+
"execution_count": null,
|
787 |
+
"id": "c8ca2ae9",
|
788 |
+
"metadata": {
|
789 |
+
"execution": {
|
790 |
+
"iopub.execute_input": "2024-02-28T20:33:30.414733Z",
|
791 |
+
"iopub.status.busy": "2024-02-28T20:33:30.413806Z",
|
792 |
+
"iopub.status.idle": "2024-02-28T20:33:30.445350Z",
|
793 |
+
"shell.execute_reply": "2024-02-28T20:33:30.444502Z",
|
794 |
+
"shell.execute_reply.started": "2024-02-28T20:33:30.414688Z"
|
795 |
+
},
|
796 |
+
"papermill": {
|
797 |
+
"duration": null,
|
798 |
+
"end_time": null,
|
799 |
+
"exception": null,
|
800 |
+
"start_time": null,
|
801 |
+
"status": "pending"
|
802 |
+
},
|
803 |
+
"tags": []
|
804 |
+
},
|
805 |
+
"outputs": [],
|
806 |
+
"source": [
|
807 |
+
"dt_y_pred = dt_model.predict(X_test)"
|
808 |
+
]
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"cell_type": "code",
|
812 |
+
"execution_count": null,
|
813 |
+
"id": "8e6dc11c",
|
814 |
+
"metadata": {
|
815 |
+
"execution": {
|
816 |
+
"iopub.execute_input": "2024-02-28T20:33:32.917637Z",
|
817 |
+
"iopub.status.busy": "2024-02-28T20:33:32.916912Z",
|
818 |
+
"iopub.status.idle": "2024-02-28T20:33:33.162356Z",
|
819 |
+
"shell.execute_reply": "2024-02-28T20:33:33.161428Z",
|
820 |
+
"shell.execute_reply.started": "2024-02-28T20:33:32.917605Z"
|
821 |
+
},
|
822 |
+
"papermill": {
|
823 |
+
"duration": null,
|
824 |
+
"end_time": null,
|
825 |
+
"exception": null,
|
826 |
+
"start_time": null,
|
827 |
+
"status": "pending"
|
828 |
+
},
|
829 |
+
"tags": []
|
830 |
+
},
|
831 |
+
"outputs": [],
|
832 |
+
"source": [
|
833 |
+
"dt_accuracy = accuracy_score(y_test, dt_y_pred)\n",
|
834 |
+
"print(\"accuracy:\", dt_accuracy)"
|
835 |
+
]
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"cell_type": "markdown",
|
839 |
+
"id": "0dfe26a4",
|
840 |
+
"metadata": {
|
841 |
+
"papermill": {
|
842 |
+
"duration": null,
|
843 |
+
"end_time": null,
|
844 |
+
"exception": null,
|
845 |
+
"start_time": null,
|
846 |
+
"status": "pending"
|
847 |
+
},
|
848 |
+
"tags": []
|
849 |
+
},
|
850 |
+
"source": [
|
851 |
+
"# Random forests\n"
|
852 |
+
]
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"cell_type": "code",
|
856 |
+
"execution_count": null,
|
857 |
+
"id": "580c6e88",
|
858 |
+
"metadata": {
|
859 |
+
"execution": {
|
860 |
+
"iopub.execute_input": "2024-02-28T20:33:37.146957Z",
|
861 |
+
"iopub.status.busy": "2024-02-28T20:33:37.145942Z",
|
862 |
+
"iopub.status.idle": "2024-02-28T20:33:40.375233Z",
|
863 |
+
"shell.execute_reply": "2024-02-28T20:33:40.374273Z",
|
864 |
+
"shell.execute_reply.started": "2024-02-28T20:33:37.146922Z"
|
865 |
+
},
|
866 |
+
"papermill": {
|
867 |
+
"duration": null,
|
868 |
+
"end_time": null,
|
869 |
+
"exception": null,
|
870 |
+
"start_time": null,
|
871 |
+
"status": "pending"
|
872 |
+
},
|
873 |
+
"tags": []
|
874 |
+
},
|
875 |
+
"outputs": [],
|
876 |
+
"source": [
|
877 |
+
"from sklearn.tree import DecisionTreeClassifier\n",
|
878 |
+
"dt_model = DecisionTreeClassifier(random_state=42)\n",
|
879 |
+
"dt_model.fit(X_train, y_train)"
|
880 |
+
]
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"cell_type": "code",
|
884 |
+
"execution_count": null,
|
885 |
+
"id": "fdc4234d",
|
886 |
+
"metadata": {
|
887 |
+
"execution": {
|
888 |
+
"iopub.execute_input": "2024-02-28T20:33:42.697604Z",
|
889 |
+
"iopub.status.busy": "2024-02-28T20:33:42.697221Z",
|
890 |
+
"iopub.status.idle": "2024-02-28T20:33:42.965045Z",
|
891 |
+
"shell.execute_reply": "2024-02-28T20:33:42.964106Z",
|
892 |
+
"shell.execute_reply.started": "2024-02-28T20:33:42.697574Z"
|
893 |
+
},
|
894 |
+
"papermill": {
|
895 |
+
"duration": null,
|
896 |
+
"end_time": null,
|
897 |
+
"exception": null,
|
898 |
+
"start_time": null,
|
899 |
+
"status": "pending"
|
900 |
+
},
|
901 |
+
"tags": []
|
902 |
+
},
|
903 |
+
"outputs": [],
|
904 |
+
"source": [
|
905 |
+
"dt_y_pred = dt_model.predict(X_test)\n",
|
906 |
+
"\n",
|
907 |
+
"# Evaluate the Decision Tree model\n",
|
908 |
+
"dt_accuracy = accuracy_score(y_test, dt_y_pred)\n",
|
909 |
+
"print(\"Decision Tree Accuracy:\", dt_accuracy)"
|
910 |
+
]
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"cell_type": "markdown",
|
914 |
+
"id": "1eef14a8",
|
915 |
+
"metadata": {
|
916 |
+
"papermill": {
|
917 |
+
"duration": null,
|
918 |
+
"end_time": null,
|
919 |
+
"exception": null,
|
920 |
+
"start_time": null,
|
921 |
+
"status": "pending"
|
922 |
+
},
|
923 |
+
"tags": []
|
924 |
+
},
|
925 |
+
"source": [
|
926 |
+
"# LSTM\n"
|
927 |
+
]
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"cell_type": "code",
|
931 |
+
"execution_count": null,
|
932 |
+
"id": "3d95e691",
|
933 |
+
"metadata": {
|
934 |
+
"execution": {
|
935 |
+
"iopub.execute_input": "2024-02-28T20:34:03.811369Z",
|
936 |
+
"iopub.status.busy": "2024-02-28T20:34:03.811034Z",
|
937 |
+
"iopub.status.idle": "2024-02-28T20:34:16.297599Z",
|
938 |
+
"shell.execute_reply": "2024-02-28T20:34:16.296591Z",
|
939 |
+
"shell.execute_reply.started": "2024-02-28T20:34:03.811342Z"
|
940 |
+
},
|
941 |
+
"papermill": {
|
942 |
+
"duration": null,
|
943 |
+
"end_time": null,
|
944 |
+
"exception": null,
|
945 |
+
"start_time": null,
|
946 |
+
"status": "pending"
|
947 |
+
},
|
948 |
+
"tags": []
|
949 |
+
},
|
950 |
+
"outputs": [],
|
951 |
+
"source": [
|
952 |
+
"import numpy as np\n",
|
953 |
+
"from tensorflow.keras.models import Sequential\n",
|
954 |
+
"from tensorflow.keras.layers import LSTM, Dense, Dropout\n",
|
955 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
956 |
+
"from sklearn.metrics import accuracy_score\n",
|
957 |
+
"from sklearn.model_selection import train_test_split"
|
958 |
+
]
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"cell_type": "code",
|
962 |
+
"execution_count": null,
|
963 |
+
"id": "45a3ea7a",
|
964 |
+
"metadata": {
|
965 |
+
"execution": {
|
966 |
+
"iopub.execute_input": "2024-02-28T20:34:21.694938Z",
|
967 |
+
"iopub.status.busy": "2024-02-28T20:34:21.693749Z",
|
968 |
+
"iopub.status.idle": "2024-02-28T20:34:23.351375Z",
|
969 |
+
"shell.execute_reply": "2024-02-28T20:34:23.350292Z",
|
970 |
+
"shell.execute_reply.started": "2024-02-28T20:34:21.694901Z"
|
971 |
+
},
|
972 |
+
"papermill": {
|
973 |
+
"duration": null,
|
974 |
+
"end_time": null,
|
975 |
+
"exception": null,
|
976 |
+
"start_time": null,
|
977 |
+
"status": "pending"
|
978 |
+
},
|
979 |
+
"tags": []
|
980 |
+
},
|
981 |
+
"outputs": [],
|
982 |
+
"source": [
|
983 |
+
"X_train_array = X_train.values.astype(np.float32)\n",
|
984 |
+
"X_test_array = X_test.values.astype(np.float32)\n",
|
985 |
+
"label_encoder = LabelEncoder()\n",
|
986 |
+
"y_train_encoded = label_encoder.fit_transform(y_train)\n",
|
987 |
+
"y_test_encoded = label_encoder.transform(y_test)"
|
988 |
+
]
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"cell_type": "code",
|
992 |
+
"execution_count": null,
|
993 |
+
"id": "3b2b4168",
|
994 |
+
"metadata": {
|
995 |
+
"execution": {
|
996 |
+
"iopub.execute_input": "2024-02-28T20:34:29.567410Z",
|
997 |
+
"iopub.status.busy": "2024-02-28T20:34:29.567010Z",
|
998 |
+
"iopub.status.idle": "2024-02-28T20:34:29.573526Z",
|
999 |
+
"shell.execute_reply": "2024-02-28T20:34:29.572343Z",
|
1000 |
+
"shell.execute_reply.started": "2024-02-28T20:34:29.567374Z"
|
1001 |
+
},
|
1002 |
+
"papermill": {
|
1003 |
+
"duration": null,
|
1004 |
+
"end_time": null,
|
1005 |
+
"exception": null,
|
1006 |
+
"start_time": null,
|
1007 |
+
"status": "pending"
|
1008 |
+
},
|
1009 |
+
"tags": []
|
1010 |
+
},
|
1011 |
+
"outputs": [],
|
1012 |
+
"source": [
|
1013 |
+
"X_train_reshaped = np.reshape(\n",
|
1014 |
+
" X_train_array, (X_train_array.shape[0], 1, X_train_array.shape[1]))\n",
|
1015 |
+
"X_test_reshaped = np.reshape(\n",
|
1016 |
+
" X_test_array, (X_test_array.shape[0], 1, X_test_array.shape[1]))"
|
1017 |
+
]
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"cell_type": "code",
|
1021 |
+
"execution_count": null,
|
1022 |
+
"id": "5ba22307",
|
1023 |
+
"metadata": {
|
1024 |
+
"execution": {
|
1025 |
+
"iopub.execute_input": "2024-02-28T20:34:32.593258Z",
|
1026 |
+
"iopub.status.busy": "2024-02-28T20:34:32.592631Z",
|
1027 |
+
"iopub.status.idle": "2024-02-28T20:34:32.597849Z",
|
1028 |
+
"shell.execute_reply": "2024-02-28T20:34:32.596788Z",
|
1029 |
+
"shell.execute_reply.started": "2024-02-28T20:34:32.593225Z"
|
1030 |
+
},
|
1031 |
+
"papermill": {
|
1032 |
+
"duration": null,
|
1033 |
+
"end_time": null,
|
1034 |
+
"exception": null,
|
1035 |
+
"start_time": null,
|
1036 |
+
"status": "pending"
|
1037 |
+
},
|
1038 |
+
"tags": []
|
1039 |
+
},
|
1040 |
+
"outputs": [],
|
1041 |
+
"source": [
|
1042 |
+
"from tensorflow.keras.layers import LSTM, Dense, Dropout\n",
|
1043 |
+
"from tensorflow.keras.models import Sequential"
|
1044 |
+
]
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"cell_type": "code",
|
1048 |
+
"execution_count": null,
|
1049 |
+
"id": "05d6c2a2",
|
1050 |
+
"metadata": {
|
1051 |
+
"execution": {
|
1052 |
+
"iopub.execute_input": "2024-02-28T20:34:35.967986Z",
|
1053 |
+
"iopub.status.busy": "2024-02-28T20:34:35.967129Z",
|
1054 |
+
"iopub.status.idle": "2024-02-28T20:34:37.983732Z",
|
1055 |
+
"shell.execute_reply": "2024-02-28T20:34:37.982934Z",
|
1056 |
+
"shell.execute_reply.started": "2024-02-28T20:34:35.967950Z"
|
1057 |
+
},
|
1058 |
+
"papermill": {
|
1059 |
+
"duration": null,
|
1060 |
+
"end_time": null,
|
1061 |
+
"exception": null,
|
1062 |
+
"start_time": null,
|
1063 |
+
"status": "pending"
|
1064 |
+
},
|
1065 |
+
"tags": []
|
1066 |
+
},
|
1067 |
+
"outputs": [],
|
1068 |
+
"source": [
|
1069 |
+
"model = Sequential()\n",
|
1070 |
+
"model.add(LSTM(units=128, input_shape=(\n",
|
1071 |
+
" 1, X_train_array.shape[1]), return_sequences=True))\n",
|
1072 |
+
"model.add(Dropout(0.2))\n",
|
1073 |
+
"model.add(LSTM(units=64, return_sequences=True))\n",
|
1074 |
+
"model.add(Dropout(0.2))\n",
|
1075 |
+
"model.add(LSTM(units=32, return_sequences=False))\n",
|
1076 |
+
"model.add(Dropout(0.2))\n",
|
1077 |
+
"model.add(Dense(units=64, activation='relu'))\n",
|
1078 |
+
"model.add(Dropout(0.2))\n",
|
1079 |
+
"model.add(Dense(units=32, activation='relu'))\n",
|
1080 |
+
"model.add(Dense(units=1, activation='sigmoid'))"
|
1081 |
+
]
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"cell_type": "code",
|
1085 |
+
"execution_count": null,
|
1086 |
+
"id": "70506f9c",
|
1087 |
+
"metadata": {
|
1088 |
+
"execution": {
|
1089 |
+
"iopub.execute_input": "2024-02-28T20:34:47.317746Z",
|
1090 |
+
"iopub.status.busy": "2024-02-28T20:34:47.317029Z",
|
1091 |
+
"iopub.status.idle": "2024-02-28T20:34:47.340010Z",
|
1092 |
+
"shell.execute_reply": "2024-02-28T20:34:47.338881Z",
|
1093 |
+
"shell.execute_reply.started": "2024-02-28T20:34:47.317713Z"
|
1094 |
+
},
|
1095 |
+
"papermill": {
|
1096 |
+
"duration": null,
|
1097 |
+
"end_time": null,
|
1098 |
+
"exception": null,
|
1099 |
+
"start_time": null,
|
1100 |
+
"status": "pending"
|
1101 |
+
},
|
1102 |
+
"tags": []
|
1103 |
+
},
|
1104 |
+
"outputs": [],
|
1105 |
+
"source": [
|
1106 |
+
"model.compile(optimizer='adam', loss='binary_crossentropy',\n",
|
1107 |
+
" metrics=['accuracy'])"
|
1108 |
+
]
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"cell_type": "code",
|
1112 |
+
"execution_count": null,
|
1113 |
+
"id": "a6cafe58",
|
1114 |
+
"metadata": {
|
1115 |
+
"execution": {
|
1116 |
+
"iopub.execute_input": "2024-02-28T20:34:50.132581Z",
|
1117 |
+
"iopub.status.busy": "2024-02-28T20:34:50.131713Z",
|
1118 |
+
"iopub.status.idle": "2024-02-28T20:34:50.168897Z",
|
1119 |
+
"shell.execute_reply": "2024-02-28T20:34:50.167980Z",
|
1120 |
+
"shell.execute_reply.started": "2024-02-28T20:34:50.132534Z"
|
1121 |
+
},
|
1122 |
+
"papermill": {
|
1123 |
+
"duration": null,
|
1124 |
+
"end_time": null,
|
1125 |
+
"exception": null,
|
1126 |
+
"start_time": null,
|
1127 |
+
"status": "pending"
|
1128 |
+
},
|
1129 |
+
"tags": []
|
1130 |
+
},
|
1131 |
+
"outputs": [],
|
1132 |
+
"source": [
|
1133 |
+
"model.summary()"
|
1134 |
+
]
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"cell_type": "code",
|
1138 |
+
"execution_count": null,
|
1139 |
+
"id": "fb4e2eb7",
|
1140 |
+
"metadata": {
|
1141 |
+
"execution": {
|
1142 |
+
"iopub.execute_input": "2024-02-28T20:34:57.849042Z",
|
1143 |
+
"iopub.status.busy": "2024-02-28T20:34:57.848387Z",
|
1144 |
+
"iopub.status.idle": "2024-02-28T20:58:09.859733Z",
|
1145 |
+
"shell.execute_reply": "2024-02-28T20:58:09.858723Z",
|
1146 |
+
"shell.execute_reply.started": "2024-02-28T20:34:57.849008Z"
|
1147 |
+
},
|
1148 |
+
"papermill": {
|
1149 |
+
"duration": null,
|
1150 |
+
"end_time": null,
|
1151 |
+
"exception": null,
|
1152 |
+
"start_time": null,
|
1153 |
+
"status": "pending"
|
1154 |
+
},
|
1155 |
+
"tags": []
|
1156 |
+
},
|
1157 |
+
"outputs": [],
|
1158 |
+
"source": [
|
1159 |
+
"model.fit(X_train_reshaped, y_train_encoded, epochs=30,\n",
|
1160 |
+
" batch_size=32, validation_split=0.1)"
|
1161 |
+
]
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"cell_type": "code",
|
1165 |
+
"execution_count": null,
|
1166 |
+
"id": "8df9b4ba",
|
1167 |
+
"metadata": {
|
1168 |
+
"execution": {
|
1169 |
+
"iopub.execute_input": "2024-02-28T21:02:40.398517Z",
|
1170 |
+
"iopub.status.busy": "2024-02-28T21:02:40.397537Z",
|
1171 |
+
"iopub.status.idle": "2024-02-28T21:02:48.047278Z",
|
1172 |
+
"shell.execute_reply": "2024-02-28T21:02:48.046275Z",
|
1173 |
+
"shell.execute_reply.started": "2024-02-28T21:02:40.398480Z"
|
1174 |
+
},
|
1175 |
+
"papermill": {
|
1176 |
+
"duration": null,
|
1177 |
+
"end_time": null,
|
1178 |
+
"exception": null,
|
1179 |
+
"start_time": null,
|
1180 |
+
"status": "pending"
|
1181 |
+
},
|
1182 |
+
"tags": []
|
1183 |
+
},
|
1184 |
+
"outputs": [],
|
1185 |
+
"source": [
|
1186 |
+
"y_pred_proba = model.predict(X_test_reshaped)\n",
|
1187 |
+
"y_pred = (y_pred_proba > 0.5).astype(int)"
|
1188 |
+
]
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"cell_type": "code",
|
1192 |
+
"execution_count": null,
|
1193 |
+
"id": "c9c1b0ae",
|
1194 |
+
"metadata": {
|
1195 |
+
"execution": {
|
1196 |
+
"iopub.execute_input": "2024-02-27T02:51:31.677208Z",
|
1197 |
+
"iopub.status.busy": "2024-02-27T02:51:31.676880Z",
|
1198 |
+
"iopub.status.idle": "2024-02-27T02:51:31.686765Z",
|
1199 |
+
"shell.execute_reply": "2024-02-27T02:51:31.685738Z",
|
1200 |
+
"shell.execute_reply.started": "2024-02-27T02:51:31.677180Z"
|
1201 |
+
},
|
1202 |
+
"papermill": {
|
1203 |
+
"duration": null,
|
1204 |
+
"end_time": null,
|
1205 |
+
"exception": null,
|
1206 |
+
"start_time": null,
|
1207 |
+
"status": "pending"
|
1208 |
+
},
|
1209 |
+
"tags": []
|
1210 |
+
},
|
1211 |
+
"outputs": [],
|
1212 |
+
"source": [
|
1213 |
+
"accuracy = accuracy_score(y_test_encoded, y_pred)\n",
|
1214 |
+
"print(\"Accuracy:\", accuracy)"
|
1215 |
+
]
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"cell_type": "code",
|
1219 |
+
"execution_count": null,
|
1220 |
+
"id": "963f04ba",
|
1221 |
+
"metadata": {
|
1222 |
+
"execution": {
|
1223 |
+
"iopub.execute_input": "2024-02-27T02:51:35.877861Z",
|
1224 |
+
"iopub.status.busy": "2024-02-27T02:51:35.877122Z",
|
1225 |
+
"iopub.status.idle": "2024-02-27T02:51:35.881902Z",
|
1226 |
+
"shell.execute_reply": "2024-02-27T02:51:35.880765Z",
|
1227 |
+
"shell.execute_reply.started": "2024-02-27T02:51:35.877829Z"
|
1228 |
+
},
|
1229 |
+
"papermill": {
|
1230 |
+
"duration": null,
|
1231 |
+
"end_time": null,
|
1232 |
+
"exception": null,
|
1233 |
+
"start_time": null,
|
1234 |
+
"status": "pending"
|
1235 |
+
},
|
1236 |
+
"tags": []
|
1237 |
+
},
|
1238 |
+
"outputs": [],
|
1239 |
+
"source": [
|
1240 |
+
"import matplotlib.pyplot as plt"
|
1241 |
+
]
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"cell_type": "code",
|
1245 |
+
"execution_count": null,
|
1246 |
+
"id": "cb765c7d",
|
1247 |
+
"metadata": {
|
1248 |
+
"execution": {
|
1249 |
+
"iopub.execute_input": "2024-02-28T21:14:46.444310Z",
|
1250 |
+
"iopub.status.busy": "2024-02-28T21:14:46.443465Z",
|
1251 |
+
"iopub.status.idle": "2024-02-28T21:14:46.448272Z",
|
1252 |
+
"shell.execute_reply": "2024-02-28T21:14:46.447257Z",
|
1253 |
+
"shell.execute_reply.started": "2024-02-28T21:14:46.444277Z"
|
1254 |
+
},
|
1255 |
+
"papermill": {
|
1256 |
+
"duration": null,
|
1257 |
+
"end_time": null,
|
1258 |
+
"exception": null,
|
1259 |
+
"start_time": null,
|
1260 |
+
"status": "pending"
|
1261 |
+
},
|
1262 |
+
"tags": []
|
1263 |
+
},
|
1264 |
+
"outputs": [],
|
1265 |
+
"source": [
|
1266 |
+
"import pickle"
|
1267 |
+
]
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"cell_type": "code",
|
1271 |
+
"execution_count": null,
|
1272 |
+
"id": "dd47a5eb",
|
1273 |
+
"metadata": {
|
1274 |
+
"execution": {
|
1275 |
+
"iopub.execute_input": "2024-02-28T21:14:49.219822Z",
|
1276 |
+
"iopub.status.busy": "2024-02-28T21:14:49.219019Z",
|
1277 |
+
"iopub.status.idle": "2024-02-28T21:14:49.316868Z",
|
1278 |
+
"shell.execute_reply": "2024-02-28T21:14:49.315889Z",
|
1279 |
+
"shell.execute_reply.started": "2024-02-28T21:14:49.219786Z"
|
1280 |
+
},
|
1281 |
+
"papermill": {
|
1282 |
+
"duration": null,
|
1283 |
+
"end_time": null,
|
1284 |
+
"exception": null,
|
1285 |
+
"start_time": null,
|
1286 |
+
"status": "pending"
|
1287 |
+
},
|
1288 |
+
"tags": []
|
1289 |
+
},
|
1290 |
+
"outputs": [],
|
1291 |
+
"source": [
|
1292 |
+
"with open('model.pkl', 'wb') as f:\n",
|
1293 |
+
" pickle.dump(model, f)"
|
1294 |
+
]
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"cell_type": "markdown",
|
1298 |
+
"id": "93655540",
|
1299 |
+
"metadata": {
|
1300 |
+
"papermill": {
|
1301 |
+
"duration": null,
|
1302 |
+
"end_time": null,
|
1303 |
+
"exception": null,
|
1304 |
+
"start_time": null,
|
1305 |
+
"status": "pending"
|
1306 |
+
},
|
1307 |
+
"tags": []
|
1308 |
+
},
|
1309 |
+
"source": [
|
1310 |
+
"# CNN\n",
|
1311 |
+
"\n",
|
1312 |
+
"#### `probleme somewhere idk `\n"
|
1313 |
+
]
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"cell_type": "code",
|
1317 |
+
"execution_count": null,
|
1318 |
+
"id": "8144cd90",
|
1319 |
+
"metadata": {
|
1320 |
+
"execution": {
|
1321 |
+
"iopub.execute_input": "2024-02-27T02:25:33.293261Z",
|
1322 |
+
"iopub.status.busy": "2024-02-27T02:25:33.292866Z",
|
1323 |
+
"iopub.status.idle": "2024-02-27T02:25:33.298337Z",
|
1324 |
+
"shell.execute_reply": "2024-02-27T02:25:33.297216Z",
|
1325 |
+
"shell.execute_reply.started": "2024-02-27T02:25:33.293228Z"
|
1326 |
+
},
|
1327 |
+
"papermill": {
|
1328 |
+
"duration": null,
|
1329 |
+
"end_time": null,
|
1330 |
+
"exception": null,
|
1331 |
+
"start_time": null,
|
1332 |
+
"status": "pending"
|
1333 |
+
},
|
1334 |
+
"tags": []
|
1335 |
+
},
|
1336 |
+
"outputs": [],
|
1337 |
+
"source": [
|
1338 |
+
"from sklearn.model_selection import train_test_split\n",
|
1339 |
+
"from tensorflow.keras.models import Sequential\n",
|
1340 |
+
"from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense\n",
|
1341 |
+
"from tensorflow.keras.optimizers import Adam"
|
1342 |
+
]
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"cell_type": "code",
|
1346 |
+
"execution_count": null,
|
1347 |
+
"id": "1507a936",
|
1348 |
+
"metadata": {
|
1349 |
+
"execution": {
|
1350 |
+
"iopub.execute_input": "2024-02-27T02:25:41.828280Z",
|
1351 |
+
"iopub.status.busy": "2024-02-27T02:25:41.827891Z",
|
1352 |
+
"iopub.status.idle": "2024-02-27T02:25:41.914213Z",
|
1353 |
+
"shell.execute_reply": "2024-02-27T02:25:41.913392Z",
|
1354 |
+
"shell.execute_reply.started": "2024-02-27T02:25:41.828241Z"
|
1355 |
+
},
|
1356 |
+
"papermill": {
|
1357 |
+
"duration": null,
|
1358 |
+
"end_time": null,
|
1359 |
+
"exception": null,
|
1360 |
+
"start_time": null,
|
1361 |
+
"status": "pending"
|
1362 |
+
},
|
1363 |
+
"tags": []
|
1364 |
+
},
|
1365 |
+
"outputs": [],
|
1366 |
+
"source": [
|
1367 |
+
"X_train, X_temp, y_train, y_temp = train_test_split(\n",
|
1368 |
+
" X, y, test_size=0.2, random_state=42)\n",
|
1369 |
+
"X_val, X_test, y_val, y_test = train_test_split(\n",
|
1370 |
+
" X_temp, y_temp, test_size=0.5, random_state=42)"
|
1371 |
+
]
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"cell_type": "code",
|
1375 |
+
"execution_count": null,
|
1376 |
+
"id": "febb5829",
|
1377 |
+
"metadata": {
|
1378 |
+
"execution": {
|
1379 |
+
"iopub.execute_input": "2024-02-27T02:25:45.647678Z",
|
1380 |
+
"iopub.status.busy": "2024-02-27T02:25:45.646969Z",
|
1381 |
+
"iopub.status.idle": "2024-02-27T02:25:45.651746Z",
|
1382 |
+
"shell.execute_reply": "2024-02-27T02:25:45.650798Z",
|
1383 |
+
"shell.execute_reply.started": "2024-02-27T02:25:45.647647Z"
|
1384 |
+
},
|
1385 |
+
"papermill": {
|
1386 |
+
"duration": null,
|
1387 |
+
"end_time": null,
|
1388 |
+
"exception": null,
|
1389 |
+
"start_time": null,
|
1390 |
+
"status": "pending"
|
1391 |
+
},
|
1392 |
+
"tags": []
|
1393 |
+
},
|
1394 |
+
"outputs": [],
|
1395 |
+
"source": [
|
1396 |
+
"num_features = X_train.shape[1]"
|
1397 |
+
]
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"cell_type": "code",
|
1401 |
+
"execution_count": null,
|
1402 |
+
"id": "131be457",
|
1403 |
+
"metadata": {
|
1404 |
+
"execution": {
|
1405 |
+
"iopub.execute_input": "2024-02-27T02:25:55.207330Z",
|
1406 |
+
"iopub.status.busy": "2024-02-27T02:25:55.206931Z",
|
1407 |
+
"iopub.status.idle": "2024-02-27T02:25:55.281487Z",
|
1408 |
+
"shell.execute_reply": "2024-02-27T02:25:55.280767Z",
|
1409 |
+
"shell.execute_reply.started": "2024-02-27T02:25:55.207300Z"
|
1410 |
+
},
|
1411 |
+
"papermill": {
|
1412 |
+
"duration": null,
|
1413 |
+
"end_time": null,
|
1414 |
+
"exception": null,
|
1415 |
+
"start_time": null,
|
1416 |
+
"status": "pending"
|
1417 |
+
},
|
1418 |
+
"tags": []
|
1419 |
+
},
|
1420 |
+
"outputs": [],
|
1421 |
+
"source": [
|
1422 |
+
"model = Sequential([\n",
|
1423 |
+
" Conv1D(filters=32, kernel_size=3, activation='relu',\n",
|
1424 |
+
" input_shape=(num_features, 1)),\n",
|
1425 |
+
" MaxPooling1D(pool_size=2),\n",
|
1426 |
+
" Conv1D(filters=64, kernel_size=3, activation='relu'),\n",
|
1427 |
+
" MaxPooling1D(pool_size=2),\n",
|
1428 |
+
" Flatten(),\n",
|
1429 |
+
" Dense(64, activation='relu'),\n",
|
1430 |
+
" Dense(1, activation='sigmoid')\n",
|
1431 |
+
"])"
|
1432 |
+
]
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"cell_type": "code",
|
1436 |
+
"execution_count": null,
|
1437 |
+
"id": "1228e48c",
|
1438 |
+
"metadata": {
|
1439 |
+
"execution": {
|
1440 |
+
"iopub.execute_input": "2024-02-27T02:26:02.388725Z",
|
1441 |
+
"iopub.status.busy": "2024-02-27T02:26:02.388349Z",
|
1442 |
+
"iopub.status.idle": "2024-02-27T02:26:02.402654Z",
|
1443 |
+
"shell.execute_reply": "2024-02-27T02:26:02.401613Z",
|
1444 |
+
"shell.execute_reply.started": "2024-02-27T02:26:02.388685Z"
|
1445 |
+
},
|
1446 |
+
"papermill": {
|
1447 |
+
"duration": null,
|
1448 |
+
"end_time": null,
|
1449 |
+
"exception": null,
|
1450 |
+
"start_time": null,
|
1451 |
+
"status": "pending"
|
1452 |
+
},
|
1453 |
+
"tags": []
|
1454 |
+
},
|
1455 |
+
"outputs": [],
|
1456 |
+
"source": [
|
1457 |
+
"model.compile(optimizer=Adam(learning_rate=0.001),\n",
|
1458 |
+
" loss='binary_crossentropy', metrics=['accuracy'])"
|
1459 |
+
]
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"cell_type": "code",
|
1463 |
+
"execution_count": null,
|
1464 |
+
"id": "61cf26b0",
|
1465 |
+
"metadata": {
|
1466 |
+
"execution": {
|
1467 |
+
"iopub.execute_input": "2024-02-27T02:26:49.628751Z",
|
1468 |
+
"iopub.status.busy": "2024-02-27T02:26:49.628140Z",
|
1469 |
+
"iopub.status.idle": "2024-02-27T02:26:49.633203Z",
|
1470 |
+
"shell.execute_reply": "2024-02-27T02:26:49.632167Z",
|
1471 |
+
"shell.execute_reply.started": "2024-02-27T02:26:49.628710Z"
|
1472 |
+
},
|
1473 |
+
"papermill": {
|
1474 |
+
"duration": null,
|
1475 |
+
"end_time": null,
|
1476 |
+
"exception": null,
|
1477 |
+
"start_time": null,
|
1478 |
+
"status": "pending"
|
1479 |
+
},
|
1480 |
+
"tags": []
|
1481 |
+
},
|
1482 |
+
"outputs": [],
|
1483 |
+
"source": [
|
1484 |
+
"import tensorflow as tf\n",
|
1485 |
+
"from sklearn.model_selection import train_test_split\n",
|
1486 |
+
"from sklearn.preprocessing import StandardScaler"
|
1487 |
+
]
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"cell_type": "code",
|
1491 |
+
"execution_count": null,
|
1492 |
+
"id": "6bf5881a",
|
1493 |
+
"metadata": {
|
1494 |
+
"execution": {
|
1495 |
+
"iopub.execute_input": "2024-02-27T02:26:56.957652Z",
|
1496 |
+
"iopub.status.busy": "2024-02-27T02:26:56.957291Z",
|
1497 |
+
"iopub.status.idle": "2024-02-27T02:26:58.040698Z",
|
1498 |
+
"shell.execute_reply": "2024-02-27T02:26:58.039438Z",
|
1499 |
+
"shell.execute_reply.started": "2024-02-27T02:26:56.957622Z"
|
1500 |
+
},
|
1501 |
+
"papermill": {
|
1502 |
+
"duration": null,
|
1503 |
+
"end_time": null,
|
1504 |
+
"exception": null,
|
1505 |
+
"start_time": null,
|
1506 |
+
"status": "pending"
|
1507 |
+
},
|
1508 |
+
"tags": []
|
1509 |
+
},
|
1510 |
+
"outputs": [],
|
1511 |
+
"source": [
|
1512 |
+
"scaler = StandardScaler()\n",
|
1513 |
+
"X_scaled = scaler.fit_transform(X)\n",
|
1514 |
+
"y_encoded = tf.keras.utils.to_categorical(y)"
|
1515 |
+
]
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"cell_type": "code",
|
1519 |
+
"execution_count": null,
|
1520 |
+
"id": "46ecaaa1",
|
1521 |
+
"metadata": {
|
1522 |
+
"execution": {
|
1523 |
+
"iopub.execute_input": "2024-02-27T02:26:08.518224Z",
|
1524 |
+
"iopub.status.busy": "2024-02-27T02:26:08.517758Z",
|
1525 |
+
"iopub.status.idle": "2024-02-27T02:26:09.398867Z",
|
1526 |
+
"shell.execute_reply": "2024-02-27T02:26:09.397682Z",
|
1527 |
+
"shell.execute_reply.started": "2024-02-27T02:26:08.518190Z"
|
1528 |
+
},
|
1529 |
+
"papermill": {
|
1530 |
+
"duration": null,
|
1531 |
+
"end_time": null,
|
1532 |
+
"exception": null,
|
1533 |
+
"start_time": null,
|
1534 |
+
"status": "pending"
|
1535 |
+
},
|
1536 |
+
"tags": []
|
1537 |
+
},
|
1538 |
+
"outputs": [],
|
1539 |
+
"source": [
|
1540 |
+
"history = model.fit(X_train, y_train, epochs=10,\n",
|
1541 |
+
" batch_size=32, validation_data=(X_val, y_val))"
|
1542 |
+
]
|
1543 |
+
}
|
1544 |
+
],
|
1545 |
+
"metadata": {
|
1546 |
+
"kaggle": {
|
1547 |
+
"accelerator": "nvidiaTeslaT4",
|
1548 |
+
"dataSources": [
|
1549 |
+
{
|
1550 |
+
"datasetId": 1936563,
|
1551 |
+
"sourceId": 6674905,
|
1552 |
+
"sourceType": "datasetVersion"
|
1553 |
+
}
|
1554 |
+
],
|
1555 |
+
"dockerImageVersionId": 30648,
|
1556 |
+
"isGpuEnabled": true,
|
1557 |
+
"isInternetEnabled": true,
|
1558 |
+
"language": "python",
|
1559 |
+
"sourceType": "notebook"
|
1560 |
+
},
|
1561 |
+
"kernelspec": {
|
1562 |
+
"display_name": "Python 3",
|
1563 |
+
"language": "python",
|
1564 |
+
"name": "python3"
|
1565 |
+
},
|
1566 |
+
"language_info": {
|
1567 |
+
"codemirror_mode": {
|
1568 |
+
"name": "ipython",
|
1569 |
+
"version": 3
|
1570 |
+
},
|
1571 |
+
"file_extension": ".py",
|
1572 |
+
"mimetype": "text/x-python",
|
1573 |
+
"name": "python",
|
1574 |
+
"nbconvert_exporter": "python",
|
1575 |
+
"pygments_lexer": "ipython3",
|
1576 |
+
"version": "3.10.13"
|
1577 |
+
},
|
1578 |
+
"papermill": {
|
1579 |
+
"default_parameters": {},
|
1580 |
+
"duration": 8.029196,
|
1581 |
+
"end_time": "2024-02-28T21:15:45.609983",
|
1582 |
+
"environment_variables": {},
|
1583 |
+
"exception": true,
|
1584 |
+
"input_path": "__notebook__.ipynb",
|
1585 |
+
"output_path": "__notebook__.ipynb",
|
1586 |
+
"parameters": {},
|
1587 |
+
"start_time": "2024-02-28T21:15:37.580787",
|
1588 |
+
"version": "2.5.0"
|
1589 |
+
}
|
1590 |
+
},
|
1591 |
+
"nbformat": 4,
|
1592 |
+
"nbformat_minor": 5
|
1593 |
+
}
|