|
import json
|
|
import logging
|
|
import os
|
|
from io import BytesIO
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
"""Huggingface AutoModel to generate token embeddings.
|
|
Loads the correct class, e.g. BERT / RoBERTa etc.
|
|
|
|
Args:
|
|
model_name_or_path: Huggingface models name
|
|
(https://huggingface.co/models)
|
|
max_seq_length: Truncate any inputs longer than max_seq_length
|
|
model_args: Keyword arguments passed to the Huggingface
|
|
Transformers model
|
|
tokenizer_args: Keyword arguments passed to the Huggingface
|
|
Transformers tokenizer
|
|
config_args: Keyword arguments passed to the Huggingface
|
|
Transformers config
|
|
cache_dir: Cache dir for Huggingface Transformers to store/load
|
|
models
|
|
do_lower_case: If true, lowercases the input (independent if the
|
|
model is cased or not)
|
|
tokenizer_name_or_path: Name or path of the tokenizer. When
|
|
None, then model_name_or_path is used
|
|
"""
|
|
|
|
save_in_root: bool = True
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_or_path: str,
|
|
max_seq_length: int = None,
|
|
model_args: Dict[str, Any] = None,
|
|
tokenizer_args: Dict[str, Any] = None,
|
|
config_args: Dict[str, Any] = None,
|
|
cache_dir: str = None,
|
|
do_lower_case: bool = False,
|
|
tokenizer_name_or_path: str = None,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__()
|
|
self.config_keys = ["max_seq_length", "do_lower_case"]
|
|
self.do_lower_case = do_lower_case
|
|
if model_args is None:
|
|
model_args = {}
|
|
if tokenizer_args is None:
|
|
tokenizer_args = {}
|
|
if config_args is None:
|
|
config_args = {}
|
|
|
|
if kwargs.get("backend", "torch") != "torch":
|
|
logger.warning(
|
|
f'"jinaai/jina-embeddings-v3" is currently not compatible with the {kwargs["backend"]} backend. '
|
|
'Continuing with the "torch" backend.'
|
|
)
|
|
|
|
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
|
|
|
|
self._lora_adaptations = self.config.lora_adaptations
|
|
if (
|
|
not isinstance(self._lora_adaptations, list)
|
|
or len(self._lora_adaptations) < 1
|
|
):
|
|
raise ValueError(
|
|
f"`lora_adaptations` must be a list and contain at least one element"
|
|
)
|
|
self._adaptation_map = {
|
|
name: idx for idx, name in enumerate(self._lora_adaptations)
|
|
}
|
|
|
|
self.default_task = model_args.pop('default_task', None)
|
|
|
|
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
|
|
|
|
if max_seq_length is not None and "model_max_length" not in tokenizer_args:
|
|
tokenizer_args["model_max_length"] = max_seq_length
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
|
|
cache_dir=cache_dir,
|
|
**tokenizer_args,
|
|
)
|
|
|
|
|
|
if max_seq_length is None:
|
|
if (
|
|
hasattr(self.auto_model, "config")
|
|
and hasattr(self.auto_model.config, "max_position_embeddings")
|
|
and hasattr(self.tokenizer, "model_max_length")
|
|
):
|
|
max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)
|
|
|
|
self.max_seq_length = max_seq_length
|
|
|
|
if tokenizer_name_or_path is not None:
|
|
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
|
|
|
|
|
|
@property
|
|
def default_task(self):
|
|
return self._default_task
|
|
|
|
@default_task.setter
|
|
def default_task(self, task: Union[None, str]):
|
|
self._validate_task(task)
|
|
self._default_task = task
|
|
|
|
|
|
def _validate_task(self, task: str):
|
|
if task and task not in self._lora_adaptations:
|
|
raise ValueError(
|
|
f"Unsupported task '{task}'. "
|
|
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}. "
|
|
f"Alternatively, don't pass the `task` argument to disable LoRA."
|
|
)
|
|
|
|
def forward(
|
|
self, features: Dict[str, torch.Tensor], task: Optional[str] = None
|
|
) -> Dict[str, torch.Tensor]:
|
|
"""Returns token_embeddings, cls_token"""
|
|
self._validate_task(task)
|
|
task = task or self.default_task
|
|
adapter_mask = None
|
|
if task:
|
|
task_id = self._adaptation_map[task]
|
|
num_examples = features['input_ids'].size(0)
|
|
adapter_mask = torch.full(
|
|
(num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
|
|
)
|
|
|
|
lora_arguments = (
|
|
{"adapter_mask": adapter_mask} if adapter_mask is not None else {}
|
|
)
|
|
features.pop('prompt_length', None)
|
|
output_states = self.auto_model.forward(**features, **lora_arguments, return_dict=False)
|
|
output_tokens = output_states[0]
|
|
features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
|
|
return features
|
|
|
|
def get_word_embedding_dimension(self) -> int:
|
|
return self.auto_model.config.hidden_size
|
|
|
|
def tokenize(
|
|
self,
|
|
texts: Union[List[str], List[dict], List[Tuple[str, str]]],
|
|
padding: Union[str, bool] = True
|
|
) -> Dict[str, torch.Tensor]:
|
|
"""Tokenizes a text and maps tokens to token-ids"""
|
|
output = {}
|
|
if isinstance(texts[0], str):
|
|
to_tokenize = [texts]
|
|
elif isinstance(texts[0], dict):
|
|
to_tokenize = []
|
|
output["text_keys"] = []
|
|
for lookup in texts:
|
|
text_key, text = next(iter(lookup.items()))
|
|
to_tokenize.append(text)
|
|
output["text_keys"].append(text_key)
|
|
to_tokenize = [to_tokenize]
|
|
else:
|
|
batch1, batch2 = [], []
|
|
for text_tuple in texts:
|
|
batch1.append(text_tuple[0])
|
|
batch2.append(text_tuple[1])
|
|
to_tokenize = [batch1, batch2]
|
|
|
|
|
|
to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]
|
|
|
|
|
|
if self.do_lower_case:
|
|
to_tokenize = [[s.lower() for s in col] for col in to_tokenize]
|
|
|
|
output.update(
|
|
self.tokenizer(
|
|
*to_tokenize,
|
|
padding=padding,
|
|
truncation="longest_first",
|
|
return_tensors="pt",
|
|
max_length=self.max_seq_length,
|
|
)
|
|
)
|
|
return output
|
|
|
|
def get_config_dict(self) -> Dict[str, Any]:
|
|
return {key: self.__dict__[key] for key in self.config_keys}
|
|
|
|
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
|
self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
|
self.tokenizer.save_pretrained(output_path)
|
|
|
|
with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
|
|
json.dump(self.get_config_dict(), fOut, indent=2)
|
|
|
|
|
|
@classmethod
|
|
def load(cls, input_path: str) -> "Transformer":
|
|
|
|
for config_name in [
|
|
"sentence_bert_config.json",
|
|
"sentence_roberta_config.json",
|
|
"sentence_distilbert_config.json",
|
|
"sentence_camembert_config.json",
|
|
"sentence_albert_config.json",
|
|
"sentence_xlm-roberta_config.json",
|
|
"sentence_xlnet_config.json",
|
|
]:
|
|
sbert_config_path = os.path.join(input_path, config_name)
|
|
if os.path.exists(sbert_config_path):
|
|
break
|
|
|
|
with open(sbert_config_path) as fIn:
|
|
config = json.load(fIn)
|
|
|
|
if "model_args" in config and "trust_remote_code" in config["model_args"]:
|
|
config["model_args"].pop("trust_remote_code")
|
|
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
|
|
config["tokenizer_args"].pop("trust_remote_code")
|
|
if "config_args" in config and "trust_remote_code" in config["config_args"]:
|
|
config["config_args"].pop("trust_remote_code")
|
|
return cls(model_name_or_path=input_path, **config)
|
|
|