BartekSadlej commited on
Commit
08d605e
1 Parent(s): e490f8a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +240 -197
README.md CHANGED
@@ -1,199 +1,242 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ - pl
5
+ model-index:
6
+ - name: 2024-06-22_12-37-29_epoch_3
7
+ results:
8
+ - dataset:
9
+ config: default
10
+ name: MTEB AllegroReviews
11
+ revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6
12
+ split: test
13
+ type: PL-MTEB/allegro-reviews
14
+ metrics:
15
+ - type: accuracy
16
+ value: 22.77335984095427
17
+ - type: f1
18
+ value: 21.633161157413287
19
+ task:
20
+ type: Classification
21
+ - dataset:
22
+ config: default
23
+ name: MTEB CBD
24
+ revision: 36ddb419bcffe6a5374c3891957912892916f28d
25
+ split: test
26
+ type: PL-MTEB/cbd
27
+ metrics:
28
+ - type: accuracy
29
+ value: 52.1
30
+ - type: ap
31
+ value: 14.669897873185539
32
+ - type: f1
33
+ value: 44.39499194571317
34
+ task:
35
+ type: Classification
36
+ - dataset:
37
+ config: default
38
+ name: MTEB CDSC-E
39
+ revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d
40
+ split: test
41
+ type: PL-MTEB/cdsce-pairclassification
42
+ metrics: []
43
+ task:
44
+ type: PairClassification
45
+ - dataset:
46
+ config: default
47
+ name: MTEB CDSC-R
48
+ revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd
49
+ split: test
50
+ type: PL-MTEB/cdscr-sts
51
+ metrics: []
52
+ task:
53
+ type: STS
54
+ - dataset:
55
+ config: default
56
+ name: MTEB EightTagsClustering
57
+ revision: 78b962b130c6690659c65abf67bf1c2f030606b6
58
+ split: test
59
+ type: PL-MTEB/8tags-clustering
60
+ metrics:
61
+ - type: v_measure
62
+ value: 2.9997457724816274
63
+ - type: v_measure_std
64
+ value: 0.7798049810107266
65
+ task:
66
+ type: Clustering
67
+ - dataset:
68
+ config: pl
69
+ name: MTEB MassiveIntentClassification (pl)
70
+ revision: 4672e20407010da34463acc759c162ca9734bca6
71
+ split: test
72
+ type: mteb/amazon_massive_intent
73
+ metrics:
74
+ - type: accuracy
75
+ value: 23.69872225958305
76
+ - type: f1
77
+ value: 22.329202066465307
78
+ task:
79
+ type: Classification
80
+ - dataset:
81
+ config: pl
82
+ name: MTEB MassiveIntentClassification (pl)
83
+ revision: 4672e20407010da34463acc759c162ca9734bca6
84
+ split: validation
85
+ type: mteb/amazon_massive_intent
86
+ metrics:
87
+ - type: accuracy
88
+ value: 22.808657156910968
89
+ - type: f1
90
+ value: 21.15686015469099
91
+ task:
92
+ type: Classification
93
+ - dataset:
94
+ config: pl
95
+ name: MTEB MassiveScenarioClassification (pl)
96
+ revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
97
+ split: test
98
+ type: mteb/amazon_massive_scenario
99
+ metrics:
100
+ - type: accuracy
101
+ value: 32.39071956960323
102
+ - type: f1
103
+ value: 29.01276146175851
104
+ task:
105
+ type: Classification
106
+ - dataset:
107
+ config: pl
108
+ name: MTEB MassiveScenarioClassification (pl)
109
+ revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
110
+ split: validation
111
+ type: mteb/amazon_massive_scenario
112
+ metrics:
113
+ - type: accuracy
114
+ value: 30.10821446138711
115
+ - type: f1
116
+ value: 28.129954296299786
117
+ task:
118
+ type: Classification
119
+ - dataset:
120
+ config: default
121
+ name: MTEB PAC
122
+ revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543
123
+ split: test
124
+ type: laugustyniak/abusive-clauses-pl
125
+ metrics:
126
+ - type: accuracy
127
+ value: 59.25282363162467
128
+ - type: ap
129
+ value: 73.7417044611021
130
+ - type: f1
131
+ value: 57.76542870147847
132
+ task:
133
+ type: Classification
134
+ - dataset:
135
+ config: default
136
+ name: MTEB PSC
137
+ revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669
138
+ split: test
139
+ type: PL-MTEB/psc-pairclassification
140
+ metrics: []
141
+ task:
142
+ type: PairClassification
143
+ - dataset:
144
+ config: default
145
+ name: MTEB PlscClusteringP2P
146
+ revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b
147
+ split: test
148
+ type: PL-MTEB/plsc-clustering-p2p
149
+ metrics:
150
+ - type: v_measure
151
+ value: 23.16471941868449
152
+ task:
153
+ type: Clustering
154
+ - dataset:
155
+ config: default
156
+ name: MTEB PlscClusteringS2S
157
+ revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a
158
+ split: test
159
+ type: PL-MTEB/plsc-clustering-s2s
160
+ metrics:
161
+ - type: v_measure
162
+ value: 20.457634502092688
163
+ task:
164
+ type: Clustering
165
+ - dataset:
166
+ config: default
167
+ name: MTEB PolEmo2.0-IN
168
+ revision: d90724373c70959f17d2331ad51fb60c71176b03
169
+ split: test
170
+ type: PL-MTEB/polemo2_in
171
+ metrics:
172
+ - type: accuracy
173
+ value: 36.952908587257625
174
+ - type: f1
175
+ value: 35.76600816919445
176
+ task:
177
+ type: Classification
178
+ - dataset:
179
+ config: default
180
+ name: MTEB PolEmo2.0-OUT
181
+ revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4
182
+ split: test
183
+ type: PL-MTEB/polemo2_out
184
+ metrics:
185
+ - type: accuracy
186
+ value: 25.10121457489879
187
+ - type: f1
188
+ value: 20.318534993487354
189
+ task:
190
+ type: Classification
191
+ - dataset:
192
+ config: default
193
+ name: MTEB SICK-E-PL
194
+ revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9
195
+ split: test
196
+ type: PL-MTEB/sicke-pl-pairclassification
197
+ metrics: []
198
+ task:
199
+ type: PairClassification
200
+ - dataset:
201
+ config: default
202
+ name: MTEB SICK-R-PL
203
+ revision: fd5c2441b7eeff8676768036142af4cfa42c1339
204
+ split: test
205
+ type: PL-MTEB/sickr-pl-sts
206
+ metrics: []
207
+ task:
208
+ type: STS
209
+ - dataset:
210
+ config: pl
211
+ name: MTEB STS22 (pl)
212
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
213
+ split: test
214
+ type: mteb/sts22-crosslingual-sts
215
+ metrics: []
216
+ task:
217
+ type: STS
218
+ - dataset:
219
+ config: pl
220
+ name: MTEB STSBenchmarkMultilingualSTS (pl)
221
+ revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
222
+ split: dev
223
+ type: mteb/stsb_multi_mt
224
+ metrics: []
225
+ task:
226
+ type: STS
227
+ - dataset:
228
+ config: pl
229
+ name: MTEB STSBenchmarkMultilingualSTS (pl)
230
+ revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
231
+ split: test
232
+ type: mteb/stsb_multi_mt
233
+ metrics: []
234
+ task:
235
+ type: STS
236
+ pipeline_tag: sentence-similarity
237
+ tags:
238
+ - sentence-transformers
239
+ - sentence-similarity
240
+ - mteb
241
+ - feature-extraction
242
  ---