BartekSadlej
commited on
Commit
•
2b81fa2
1
Parent(s):
d3b8ffb
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,199 +1,242 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- pl
|
5 |
+
model-index:
|
6 |
+
- name: 2024-06-22_12-37-29_epoch_1
|
7 |
+
results:
|
8 |
+
- dataset:
|
9 |
+
config: default
|
10 |
+
name: MTEB AllegroReviews
|
11 |
+
revision: b89853e6de927b0e3bfa8ecc0e56fe4e02ceafc6
|
12 |
+
split: test
|
13 |
+
type: PL-MTEB/allegro-reviews
|
14 |
+
metrics:
|
15 |
+
- type: accuracy
|
16 |
+
value: 22.842942345924456
|
17 |
+
- type: f1
|
18 |
+
value: 21.641804191974572
|
19 |
+
task:
|
20 |
+
type: Classification
|
21 |
+
- dataset:
|
22 |
+
config: default
|
23 |
+
name: MTEB CBD
|
24 |
+
revision: 36ddb419bcffe6a5374c3891957912892916f28d
|
25 |
+
split: test
|
26 |
+
type: PL-MTEB/cbd
|
27 |
+
metrics:
|
28 |
+
- type: accuracy
|
29 |
+
value: 53.14
|
30 |
+
- type: ap
|
31 |
+
value: 15.31564514525753
|
32 |
+
- type: f1
|
33 |
+
value: 45.470147585512024
|
34 |
+
task:
|
35 |
+
type: Classification
|
36 |
+
- dataset:
|
37 |
+
config: default
|
38 |
+
name: MTEB CDSC-E
|
39 |
+
revision: 0a3d4aa409b22f80eb22cbf59b492637637b536d
|
40 |
+
split: test
|
41 |
+
type: PL-MTEB/cdsce-pairclassification
|
42 |
+
metrics: []
|
43 |
+
task:
|
44 |
+
type: PairClassification
|
45 |
+
- dataset:
|
46 |
+
config: default
|
47 |
+
name: MTEB CDSC-R
|
48 |
+
revision: 1cd6abbb00df7d14be3dbd76a7dcc64b3a79a7cd
|
49 |
+
split: test
|
50 |
+
type: PL-MTEB/cdscr-sts
|
51 |
+
metrics: []
|
52 |
+
task:
|
53 |
+
type: STS
|
54 |
+
- dataset:
|
55 |
+
config: default
|
56 |
+
name: MTEB EightTagsClustering
|
57 |
+
revision: 78b962b130c6690659c65abf67bf1c2f030606b6
|
58 |
+
split: test
|
59 |
+
type: PL-MTEB/8tags-clustering
|
60 |
+
metrics:
|
61 |
+
- type: v_measure
|
62 |
+
value: 5.695987232628517
|
63 |
+
- type: v_measure_std
|
64 |
+
value: 1.7248090836808307
|
65 |
+
task:
|
66 |
+
type: Clustering
|
67 |
+
- dataset:
|
68 |
+
config: pl
|
69 |
+
name: MTEB MassiveIntentClassification (pl)
|
70 |
+
revision: 4672e20407010da34463acc759c162ca9734bca6
|
71 |
+
split: test
|
72 |
+
type: mteb/amazon_massive_intent
|
73 |
+
metrics:
|
74 |
+
- type: accuracy
|
75 |
+
value: 27.706792199058505
|
76 |
+
- type: f1
|
77 |
+
value: 26.05776336230874
|
78 |
+
task:
|
79 |
+
type: Classification
|
80 |
+
- dataset:
|
81 |
+
config: pl
|
82 |
+
name: MTEB MassiveIntentClassification (pl)
|
83 |
+
revision: 4672e20407010da34463acc759c162ca9734bca6
|
84 |
+
split: validation
|
85 |
+
type: mteb/amazon_massive_intent
|
86 |
+
metrics:
|
87 |
+
- type: accuracy
|
88 |
+
value: 27.471716674864734
|
89 |
+
- type: f1
|
90 |
+
value: 25.664839400133832
|
91 |
+
task:
|
92 |
+
type: Classification
|
93 |
+
- dataset:
|
94 |
+
config: pl
|
95 |
+
name: MTEB MassiveScenarioClassification (pl)
|
96 |
+
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
|
97 |
+
split: test
|
98 |
+
type: mteb/amazon_massive_scenario
|
99 |
+
metrics:
|
100 |
+
- type: accuracy
|
101 |
+
value: 36.86617350369873
|
102 |
+
- type: f1
|
103 |
+
value: 33.513611274178615
|
104 |
+
task:
|
105 |
+
type: Classification
|
106 |
+
- dataset:
|
107 |
+
config: pl
|
108 |
+
name: MTEB MassiveScenarioClassification (pl)
|
109 |
+
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
|
110 |
+
split: validation
|
111 |
+
type: mteb/amazon_massive_scenario
|
112 |
+
metrics:
|
113 |
+
- type: accuracy
|
114 |
+
value: 34.9877029021151
|
115 |
+
- type: f1
|
116 |
+
value: 32.42066963287712
|
117 |
+
task:
|
118 |
+
type: Classification
|
119 |
+
- dataset:
|
120 |
+
config: default
|
121 |
+
name: MTEB PAC
|
122 |
+
revision: fc69d1c153a8ccdcf1eef52f4e2a27f88782f543
|
123 |
+
split: test
|
124 |
+
type: laugustyniak/abusive-clauses-pl
|
125 |
+
metrics:
|
126 |
+
- type: accuracy
|
127 |
+
value: 61.8129163046626
|
128 |
+
- type: ap
|
129 |
+
value: 73.24690970245152
|
130 |
+
- type: f1
|
131 |
+
value: 59.037151737082574
|
132 |
+
task:
|
133 |
+
type: Classification
|
134 |
+
- dataset:
|
135 |
+
config: default
|
136 |
+
name: MTEB PSC
|
137 |
+
revision: d05a294af9e1d3ff2bfb6b714e08a24a6cabc669
|
138 |
+
split: test
|
139 |
+
type: PL-MTEB/psc-pairclassification
|
140 |
+
metrics: []
|
141 |
+
task:
|
142 |
+
type: PairClassification
|
143 |
+
- dataset:
|
144 |
+
config: default
|
145 |
+
name: MTEB PlscClusteringP2P
|
146 |
+
revision: 8436dd4c05222778013d6642ee2f3fa1722bca9b
|
147 |
+
split: test
|
148 |
+
type: PL-MTEB/plsc-clustering-p2p
|
149 |
+
metrics:
|
150 |
+
- type: v_measure
|
151 |
+
value: 28.336795094013805
|
152 |
+
task:
|
153 |
+
type: Clustering
|
154 |
+
- dataset:
|
155 |
+
config: default
|
156 |
+
name: MTEB PlscClusteringS2S
|
157 |
+
revision: 39bcadbac6b1eddad7c1a0a176119ce58060289a
|
158 |
+
split: test
|
159 |
+
type: PL-MTEB/plsc-clustering-s2s
|
160 |
+
metrics:
|
161 |
+
- type: v_measure
|
162 |
+
value: 25.232771697872774
|
163 |
+
task:
|
164 |
+
type: Clustering
|
165 |
+
- dataset:
|
166 |
+
config: default
|
167 |
+
name: MTEB PolEmo2.0-IN
|
168 |
+
revision: d90724373c70959f17d2331ad51fb60c71176b03
|
169 |
+
split: test
|
170 |
+
type: PL-MTEB/polemo2_in
|
171 |
+
metrics:
|
172 |
+
- type: accuracy
|
173 |
+
value: 39.91689750692521
|
174 |
+
- type: f1
|
175 |
+
value: 41.172225830061706
|
176 |
+
task:
|
177 |
+
type: Classification
|
178 |
+
- dataset:
|
179 |
+
config: default
|
180 |
+
name: MTEB PolEmo2.0-OUT
|
181 |
+
revision: 6a21ab8716e255ab1867265f8b396105e8aa63d4
|
182 |
+
split: test
|
183 |
+
type: PL-MTEB/polemo2_out
|
184 |
+
metrics:
|
185 |
+
- type: accuracy
|
186 |
+
value: 26.45748987854251
|
187 |
+
- type: f1
|
188 |
+
value: 20.472862813242454
|
189 |
+
task:
|
190 |
+
type: Classification
|
191 |
+
- dataset:
|
192 |
+
config: default
|
193 |
+
name: MTEB SICK-E-PL
|
194 |
+
revision: 71bba34b0ece6c56dfcf46d9758a27f7a90f17e9
|
195 |
+
split: test
|
196 |
+
type: PL-MTEB/sicke-pl-pairclassification
|
197 |
+
metrics: []
|
198 |
+
task:
|
199 |
+
type: PairClassification
|
200 |
+
- dataset:
|
201 |
+
config: default
|
202 |
+
name: MTEB SICK-R-PL
|
203 |
+
revision: fd5c2441b7eeff8676768036142af4cfa42c1339
|
204 |
+
split: test
|
205 |
+
type: PL-MTEB/sickr-pl-sts
|
206 |
+
metrics: []
|
207 |
+
task:
|
208 |
+
type: STS
|
209 |
+
- dataset:
|
210 |
+
config: pl
|
211 |
+
name: MTEB STS22 (pl)
|
212 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
213 |
+
split: test
|
214 |
+
type: mteb/sts22-crosslingual-sts
|
215 |
+
metrics: []
|
216 |
+
task:
|
217 |
+
type: STS
|
218 |
+
- dataset:
|
219 |
+
config: pl
|
220 |
+
name: MTEB STSBenchmarkMultilingualSTS (pl)
|
221 |
+
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
|
222 |
+
split: dev
|
223 |
+
type: mteb/stsb_multi_mt
|
224 |
+
metrics: []
|
225 |
+
task:
|
226 |
+
type: STS
|
227 |
+
- dataset:
|
228 |
+
config: pl
|
229 |
+
name: MTEB STSBenchmarkMultilingualSTS (pl)
|
230 |
+
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
|
231 |
+
split: test
|
232 |
+
type: mteb/stsb_multi_mt
|
233 |
+
metrics: []
|
234 |
+
task:
|
235 |
+
type: STS
|
236 |
+
pipeline_tag: sentence-similarity
|
237 |
+
tags:
|
238 |
+
- sentence-transformers
|
239 |
+
- sentence-similarity
|
240 |
+
- mteb
|
241 |
+
- feature-extraction
|
242 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|