Upload model
Browse files- README.md +199 -0
- config.json +58 -0
- configuration_multiheadcrf.py +34 -0
- model.safetensors +3 -0
- modeling_multiheadcrf.py +446 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "trained-models/lcampillos-None-C32-H3-E60-ANone-%0.0-P0.0-42/checkpoint-1080",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaMultiHeadCRFModel"
|
5 |
+
],
|
6 |
+
"args_random_seed": 42,
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"augmentation": "None",
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_multiheadcrf.MultiHeadCRFConfig",
|
11 |
+
"AutoModel": "modeling_multiheadcrf.RobertaMultiHeadCRFModel"
|
12 |
+
},
|
13 |
+
"bos_token_id": 0,
|
14 |
+
"classes": [
|
15 |
+
"SINTOMA",
|
16 |
+
"PROCEDIMIENTO",
|
17 |
+
"ENFERMEDAD",
|
18 |
+
"PROTEINAS",
|
19 |
+
"CHEMICAL"
|
20 |
+
],
|
21 |
+
"classifier_dropout": null,
|
22 |
+
"context_size": 32,
|
23 |
+
"crf_reduction": "mean",
|
24 |
+
"eos_token_id": 2,
|
25 |
+
"freeze": false,
|
26 |
+
"gradient_checkpointing": false,
|
27 |
+
"hidden_act": "gelu",
|
28 |
+
"hidden_dropout_prob": 0.1,
|
29 |
+
"hidden_size": 768,
|
30 |
+
"id2label": {
|
31 |
+
"0": "O",
|
32 |
+
"1": "B",
|
33 |
+
"2": "I"
|
34 |
+
},
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"intermediate_size": 3072,
|
37 |
+
"label2id": {
|
38 |
+
"B": 1,
|
39 |
+
"I": 2,
|
40 |
+
"O": 0
|
41 |
+
},
|
42 |
+
"layer_norm_eps": 1e-05,
|
43 |
+
"max_position_embeddings": 514,
|
44 |
+
"model_type": "crf-tagger",
|
45 |
+
"num_attention_heads": 12,
|
46 |
+
"num_hidden_layers": 12,
|
47 |
+
"number_of_layer_per_head": 3,
|
48 |
+
"p_augmentation": 0.5,
|
49 |
+
"pad_token_id": 1,
|
50 |
+
"percentage_tags": 0.0,
|
51 |
+
"position_embedding_type": "absolute",
|
52 |
+
"torch_dtype": "float32",
|
53 |
+
"transformers_version": "4.40.2",
|
54 |
+
"type_vocab_size": 1,
|
55 |
+
"use_cache": true,
|
56 |
+
"version": "0.1.2",
|
57 |
+
"vocab_size": 50262
|
58 |
+
}
|
configuration_multiheadcrf.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import PretrainedConfig, AutoConfig
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
|
6 |
+
class MultiHeadCRFConfig(PretrainedConfig):
|
7 |
+
model_type = "crf-tagger"
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
classes = list(),
|
12 |
+
number_of_layer_per_head = 1,
|
13 |
+
augmentation = "random",
|
14 |
+
context_size = 64,
|
15 |
+
percentage_tags = 0.2,
|
16 |
+
p_augmentation = 0.5,
|
17 |
+
crf_reduction = "mean",
|
18 |
+
freeze = False,
|
19 |
+
version="0.1.2",
|
20 |
+
**kwargs,
|
21 |
+
):
|
22 |
+
self.classes = classes
|
23 |
+
self.number_of_layer_per_head=number_of_layer_per_head
|
24 |
+
self.version = version
|
25 |
+
self.augmentation = augmentation
|
26 |
+
self.context_size = context_size
|
27 |
+
self.percentage_tags = percentage_tags
|
28 |
+
self.p_augmentation = p_augmentation
|
29 |
+
self.crf_reduction = crf_reduction
|
30 |
+
self.freeze=freeze
|
31 |
+
super().__init__(**kwargs)
|
32 |
+
|
33 |
+
|
34 |
+
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12130943acd65f1bfc010c10a8cf964e583a9bca41e69cf44efc79234bd5060e
|
3 |
+
size 531721208
|
modeling_multiheadcrf.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Optional, Union, List
|
3 |
+
from transformers import AutoModel, PreTrainedModel, AutoConfig, AutoModel, RobertaModel, BertModel
|
4 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import CrossEntropyLoss
|
7 |
+
import torch
|
8 |
+
from itertools import islice
|
9 |
+
from.configuration_multiheadcrf import MultiHeadCRFConfig
|
10 |
+
|
11 |
+
NUM_PER_LAYER = 16
|
12 |
+
|
13 |
+
class RobertaMultiHeadCRFModel(PreTrainedModel):
|
14 |
+
config_class = MultiHeadCRFConfig
|
15 |
+
transformer_backbone_class = RobertaModel
|
16 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
17 |
+
|
18 |
+
def __init__(self, config):
|
19 |
+
super().__init__(config)
|
20 |
+
self.num_labels = config.num_labels
|
21 |
+
|
22 |
+
self.number_of_layer_per_head = config.number_of_layer_per_head
|
23 |
+
|
24 |
+
self.heads = config.classes #expected an array of classes we are predicting
|
25 |
+
|
26 |
+
# this can be BERT ROBERTA and other BERT-variants
|
27 |
+
self.bert = self.transformer_backbone_class(config, add_pooling_layer=False)
|
28 |
+
#AutoModel(config, add_pooling_layer=False)
|
29 |
+
#AutoModel.from_pretrained(config._name_or_path, config=config, add_pooling_layer=False)
|
30 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
31 |
+
|
32 |
+
print(sorted(self.heads))
|
33 |
+
for ent in self.heads:
|
34 |
+
for i in range(self.number_of_layer_per_head):
|
35 |
+
setattr(self, f"{ent}_dense_{i}", nn.Linear(config.hidden_size, config.hidden_size))
|
36 |
+
setattr(self, f"{ent}_dense_activation_{i}", nn.GELU(approximate='none'))
|
37 |
+
setattr(self, f"{ent}_classifier", nn.Linear(config.hidden_size, config.num_labels))
|
38 |
+
setattr(self, f"{ent}_crf", CRF(num_tags=config.num_labels, batch_first=True))
|
39 |
+
setattr(self, f"{ent}_reduction", config.crf_reduction)
|
40 |
+
self.reduction=config.crf_reduction
|
41 |
+
|
42 |
+
if self.config.freeze == True:
|
43 |
+
self.manage_freezing()
|
44 |
+
|
45 |
+
def manage_freezing(self):
|
46 |
+
for _, param in self.bert.embeddings.named_parameters():
|
47 |
+
param.requires_grad = False
|
48 |
+
|
49 |
+
num_encoders_to_freeze = self.config.num_frozen_encoder
|
50 |
+
if num_encoders_to_freeze > 0:
|
51 |
+
for _, param in islice(self.bert.encoder.named_parameters(), num_encoders_to_freeze*NUM_PER_LAYER):
|
52 |
+
param.requires_grad = False
|
53 |
+
|
54 |
+
|
55 |
+
def forward(self,
|
56 |
+
input_ids=None,
|
57 |
+
attention_mask=None,
|
58 |
+
token_type_ids=None,
|
59 |
+
position_ids=None,
|
60 |
+
head_mask=None,
|
61 |
+
inputs_embeds=None,
|
62 |
+
labels=None,
|
63 |
+
output_attentions=None,
|
64 |
+
output_hidden_states=None,
|
65 |
+
return_dict=None
|
66 |
+
):
|
67 |
+
# Default `model.config.use_return_dict´ is `True´
|
68 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
69 |
+
|
70 |
+
outputs = self.bert(input_ids,
|
71 |
+
attention_mask=attention_mask,
|
72 |
+
token_type_ids=token_type_ids,
|
73 |
+
position_ids=position_ids,
|
74 |
+
head_mask=head_mask,
|
75 |
+
inputs_embeds=inputs_embeds,
|
76 |
+
output_attentions=output_attentions,
|
77 |
+
output_hidden_states=output_hidden_states,
|
78 |
+
return_dict=return_dict)
|
79 |
+
|
80 |
+
sequence_output = outputs[0]
|
81 |
+
sequence_output = self.dropout(sequence_output) # B S E
|
82 |
+
|
83 |
+
logits = {k:0 for k in self.heads}
|
84 |
+
for ent in self.heads:
|
85 |
+
for i in range(self.number_of_layer_per_head):
|
86 |
+
dense_output = getattr(self, f"{ent}_dense_{i}")(sequence_output)
|
87 |
+
dense_output = getattr(self, f"{ent}_dense_activation_{i}")(dense_output)
|
88 |
+
logits[ent] = getattr(self, f"{ent}_classifier")(dense_output)
|
89 |
+
#logits = self.classifier(sequence_output)
|
90 |
+
loss = None
|
91 |
+
if labels is not None:
|
92 |
+
# During train/test as we don't pass labels during inference
|
93 |
+
|
94 |
+
# loss
|
95 |
+
outputs = {k:0 for k in self.heads}
|
96 |
+
for ent in self.heads:
|
97 |
+
|
98 |
+
outputs[ent] = getattr(self, f"{ent}_crf")(logits[ent],labels[ent], reduction=self.reduction)
|
99 |
+
|
100 |
+
# print(outputs)
|
101 |
+
return sum(outputs.values()), logits
|
102 |
+
else: #running prediction?
|
103 |
+
# decoded tags
|
104 |
+
# NOTE: This gather operation (multiGPU) not work here, bc it uses tensors that are on CPU...
|
105 |
+
outputs = {k:0 for k in self.heads}
|
106 |
+
|
107 |
+
for ent in self.heads:
|
108 |
+
outputs[ent] = torch.Tensor(getattr(self, f"{ent}_crf").decode(logits[ent]))
|
109 |
+
return [outputs[ent] for ent in sorted(self.heads)]
|
110 |
+
|
111 |
+
|
112 |
+
class BertMultiHeadCRFModel(RobertaMultiHeadCRFModel):
|
113 |
+
config_class = MultiHeadCRFConfig
|
114 |
+
transformer_backbone_class = BertModel
|
115 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
116 |
+
|
117 |
+
# Taken from https://github.com/kmkurn/pytorch-crf/blob/master/torchcrf/__init__.py and fixed got uint8 warning
|
118 |
+
LARGE_NEGATIVE_NUMBER = -1e9
|
119 |
+
class CRF(nn.Module):
|
120 |
+
"""Conditional random field.
|
121 |
+
This module implements a conditional random field [LMP01]_. The forward computation
|
122 |
+
of this class computes the log likelihood of the given sequence of tags and
|
123 |
+
emission score tensor. This class also has `~CRF.decode` method which finds
|
124 |
+
the best tag sequence given an emission score tensor using `Viterbi algorithm`_.
|
125 |
+
Args:
|
126 |
+
num_tags: Number of tags.
|
127 |
+
batch_first: Whether the first dimension corresponds to the size of a minibatch.
|
128 |
+
Attributes:
|
129 |
+
start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size
|
130 |
+
``(num_tags,)``.
|
131 |
+
end_transitions (`~torch.nn.Parameter`): End transition score tensor of size
|
132 |
+
``(num_tags,)``.
|
133 |
+
transitions (`~torch.nn.Parameter`): Transition score tensor of size
|
134 |
+
``(num_tags, num_tags)``.
|
135 |
+
.. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001).
|
136 |
+
"Conditional random fields: Probabilistic models for segmenting and
|
137 |
+
labeling sequence data". *Proc. 18th International Conf. on Machine
|
138 |
+
Learning*. Morgan Kaufmann. pp. 282–289.
|
139 |
+
.. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, num_tags: int, batch_first: bool = False) -> None:
|
143 |
+
if num_tags <= 0:
|
144 |
+
raise ValueError(f'invalid number of tags: {num_tags}')
|
145 |
+
super().__init__()
|
146 |
+
self.num_tags = num_tags
|
147 |
+
self.batch_first = batch_first
|
148 |
+
self.start_transitions = nn.Parameter(torch.empty(num_tags))
|
149 |
+
self.end_transitions = nn.Parameter(torch.empty(num_tags))
|
150 |
+
self.transitions = nn.Parameter(torch.empty(num_tags, num_tags))
|
151 |
+
|
152 |
+
self.reset_parameters()
|
153 |
+
self.mask_impossible_transitions()
|
154 |
+
|
155 |
+
def reset_parameters(self) -> None:
|
156 |
+
"""Initialize the transition parameters.
|
157 |
+
The parameters will be initialized randomly from a uniform distribution
|
158 |
+
between -0.1 and 0.1.
|
159 |
+
"""
|
160 |
+
nn.init.uniform_(self.start_transitions, -0.1, 0.1)
|
161 |
+
nn.init.uniform_(self.end_transitions, -0.1, 0.1)
|
162 |
+
nn.init.uniform_(self.transitions, -0.1, 0.1)
|
163 |
+
|
164 |
+
def mask_impossible_transitions(self) -> None:
|
165 |
+
"""Set the value of impossible transitions to LARGE_NEGATIVE_NUMBER
|
166 |
+
- start transition value of I-X
|
167 |
+
- transition score of O -> I
|
168 |
+
"""
|
169 |
+
with torch.no_grad():
|
170 |
+
self.start_transitions[2] = LARGE_NEGATIVE_NUMBER
|
171 |
+
|
172 |
+
self.transitions[0][2] = LARGE_NEGATIVE_NUMBER
|
173 |
+
|
174 |
+
def __repr__(self) -> str:
|
175 |
+
return f'{self.__class__.__name__}(num_tags={self.num_tags})'
|
176 |
+
|
177 |
+
def forward(
|
178 |
+
self,
|
179 |
+
emissions: torch.Tensor,
|
180 |
+
tags: torch.LongTensor,
|
181 |
+
mask: Optional[torch.ByteTensor] = None,
|
182 |
+
reduction: str = 'sum',
|
183 |
+
) -> torch.Tensor:
|
184 |
+
"""Compute the conditional log likelihood of a sequence of tags given emission scores.
|
185 |
+
Args:
|
186 |
+
emissions (`~torch.Tensor`): Emission score tensor of size
|
187 |
+
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
|
188 |
+
``(batch_size, seq_length, num_tags)`` otherwise.
|
189 |
+
tags (`~torch.LongTensor`): Sequence of tags tensor of size
|
190 |
+
``(seq_length, batch_size)`` if ``batch_first`` is ``False``,
|
191 |
+
``(batch_size, seq_length)`` otherwise.
|
192 |
+
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
|
193 |
+
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
|
194 |
+
reduction: Specifies the reduction to apply to the output:
|
195 |
+
``none|sum|mean|token_mean``. ``none``: no reduction will be applied.
|
196 |
+
``sum``: the output will be summed over batches. ``mean``: the output will be
|
197 |
+
averaged over batches. ``token_mean``: the output will be averaged over tokens.
|
198 |
+
Returns:
|
199 |
+
`~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if
|
200 |
+
reduction is ``none``, ``()`` otherwise.
|
201 |
+
"""
|
202 |
+
#self.mask_impossible_transitions()
|
203 |
+
self._validate(emissions, tags=tags, mask=mask)
|
204 |
+
if reduction not in ('none', 'sum', 'mean', 'token_mean'):
|
205 |
+
raise ValueError(f'invalid reduction: {reduction}')
|
206 |
+
if mask is None:
|
207 |
+
mask = torch.ones_like(tags, dtype=torch.uint8)
|
208 |
+
|
209 |
+
if self.batch_first:
|
210 |
+
emissions = emissions.transpose(0, 1)
|
211 |
+
tags = tags.transpose(0, 1)
|
212 |
+
mask = mask.transpose(0, 1)
|
213 |
+
|
214 |
+
# shape: (batch_size,)
|
215 |
+
numerator = self._compute_score(emissions, tags, mask)
|
216 |
+
# shape: (batch_size,)
|
217 |
+
denominator = self._compute_normalizer(emissions, mask)
|
218 |
+
# shape: (batch_size,)
|
219 |
+
llh = numerator - denominator
|
220 |
+
nllh = -llh
|
221 |
+
|
222 |
+
if reduction == 'none':
|
223 |
+
return nllh
|
224 |
+
if reduction == 'sum':
|
225 |
+
return nllh.sum()
|
226 |
+
if reduction == 'mean':
|
227 |
+
return nllh.mean()
|
228 |
+
assert reduction == 'token_mean'
|
229 |
+
return nllh.sum() / mask.type_as(emissions).sum()
|
230 |
+
|
231 |
+
def decode(self, emissions: torch.Tensor,
|
232 |
+
mask: Optional[torch.ByteTensor] = None) -> List[List[int]]:
|
233 |
+
"""Find the most likely tag sequence using Viterbi algorithm.
|
234 |
+
Args:
|
235 |
+
emissions (`~torch.Tensor`): Emission score tensor of size
|
236 |
+
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
|
237 |
+
``(batch_size, seq_length, num_tags)`` otherwise.
|
238 |
+
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
|
239 |
+
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
|
240 |
+
Returns:
|
241 |
+
List of list containing the best tag sequence for each batch.
|
242 |
+
"""
|
243 |
+
self._validate(emissions, mask=mask)
|
244 |
+
if mask is None:
|
245 |
+
mask = emissions.new_ones(emissions.shape[:2], dtype=torch.uint8)
|
246 |
+
|
247 |
+
if self.batch_first:
|
248 |
+
emissions = emissions.transpose(0, 1)
|
249 |
+
mask = mask.transpose(0, 1)
|
250 |
+
|
251 |
+
return self._viterbi_decode(emissions, mask)
|
252 |
+
|
253 |
+
def _validate(
|
254 |
+
self,
|
255 |
+
emissions: torch.Tensor,
|
256 |
+
tags: Optional[torch.LongTensor] = None,
|
257 |
+
mask: Optional[torch.ByteTensor] = None) -> None:
|
258 |
+
if emissions.dim() != 3:
|
259 |
+
raise ValueError(f'emissions must have dimension of 3, got {emissions.dim()}')
|
260 |
+
if emissions.size(2) != self.num_tags:
|
261 |
+
raise ValueError(
|
262 |
+
f'expected last dimension of emissions is {self.num_tags}, '
|
263 |
+
f'got {emissions.size(2)}')
|
264 |
+
|
265 |
+
if tags is not None:
|
266 |
+
if emissions.shape[:2] != tags.shape:
|
267 |
+
raise ValueError(
|
268 |
+
'the first two dimensions of emissions and tags must match, '
|
269 |
+
f'got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}')
|
270 |
+
|
271 |
+
if mask is not None:
|
272 |
+
if emissions.shape[:2] != mask.shape:
|
273 |
+
raise ValueError(
|
274 |
+
'the first two dimensions of emissions and mask must match, '
|
275 |
+
f'got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}')
|
276 |
+
no_empty_seq = not self.batch_first and mask[0].all()
|
277 |
+
no_empty_seq_bf = self.batch_first and mask[:, 0].all()
|
278 |
+
if not no_empty_seq and not no_empty_seq_bf:
|
279 |
+
raise ValueError('mask of the first timestep must all be on')
|
280 |
+
|
281 |
+
def _compute_score(
|
282 |
+
self, emissions: torch.Tensor, tags: torch.LongTensor,
|
283 |
+
mask: torch.ByteTensor) -> torch.Tensor:
|
284 |
+
# emissions: (seq_length, batch_size, num_tags)
|
285 |
+
# tags: (seq_length, batch_size)
|
286 |
+
# mask: (seq_length, batch_size)
|
287 |
+
assert emissions.dim() == 3 and tags.dim() == 2
|
288 |
+
assert emissions.shape[:2] == tags.shape
|
289 |
+
assert emissions.size(2) == self.num_tags
|
290 |
+
assert mask.shape == tags.shape
|
291 |
+
assert mask[0].all()
|
292 |
+
|
293 |
+
seq_length, batch_size = tags.shape
|
294 |
+
mask = mask.type_as(emissions)
|
295 |
+
|
296 |
+
# Start transition score and first emission
|
297 |
+
# shape: (batch_size,)
|
298 |
+
score = self.start_transitions[tags[0]]
|
299 |
+
score += emissions[0, torch.arange(batch_size), tags[0]]
|
300 |
+
|
301 |
+
for i in range(1, seq_length):
|
302 |
+
# Transition score to next tag, only added if next timestep is valid (mask == 1)
|
303 |
+
# shape: (batch_size,)
|
304 |
+
score += self.transitions[tags[i - 1], tags[i]] * mask[i]
|
305 |
+
|
306 |
+
# Emission score for next tag, only added if next timestep is valid (mask == 1)
|
307 |
+
# shape: (batch_size,)
|
308 |
+
score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i]
|
309 |
+
|
310 |
+
# End transition score
|
311 |
+
# shape: (batch_size,)
|
312 |
+
seq_ends = mask.long().sum(dim=0) - 1
|
313 |
+
# shape: (batch_size,)
|
314 |
+
last_tags = tags[seq_ends, torch.arange(batch_size)]
|
315 |
+
# shape: (batch_size,)
|
316 |
+
score += self.end_transitions[last_tags]
|
317 |
+
|
318 |
+
return score
|
319 |
+
|
320 |
+
def _compute_normalizer(
|
321 |
+
self, emissions: torch.Tensor, mask: torch.ByteTensor) -> torch.Tensor:
|
322 |
+
# emissions: (seq_length, batch_size, num_tags)
|
323 |
+
# mask: (seq_length, batch_size)
|
324 |
+
assert emissions.dim() == 3 and mask.dim() == 2
|
325 |
+
assert emissions.shape[:2] == mask.shape
|
326 |
+
assert emissions.size(2) == self.num_tags
|
327 |
+
assert mask[0].all()
|
328 |
+
|
329 |
+
seq_length = emissions.size(0)
|
330 |
+
|
331 |
+
# Start transition score and first emission; score has size of
|
332 |
+
# (batch_size, num_tags) where for each batch, the j-th column stores
|
333 |
+
# the score that the first timestep has tag j
|
334 |
+
# shape: (batch_size, num_tags)
|
335 |
+
score = self.start_transitions + emissions[0]
|
336 |
+
|
337 |
+
for i in range(1, seq_length):
|
338 |
+
# Broadcast score for every possible next tag
|
339 |
+
# shape: (batch_size, num_tags, 1)
|
340 |
+
broadcast_score = score.unsqueeze(2)
|
341 |
+
|
342 |
+
# Broadcast emission score for every possible current tag
|
343 |
+
# shape: (batch_size, 1, num_tags)
|
344 |
+
broadcast_emissions = emissions[i].unsqueeze(1)
|
345 |
+
|
346 |
+
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
|
347 |
+
# for each sample, entry at row i and column j stores the sum of scores of all
|
348 |
+
# possible tag sequences so far that end with transitioning from tag i to tag j
|
349 |
+
# and emitting
|
350 |
+
# shape: (batch_size, num_tags, num_tags)
|
351 |
+
next_score = broadcast_score + self.transitions + broadcast_emissions
|
352 |
+
|
353 |
+
# Sum over all possible current tags, but we're in score space, so a sum
|
354 |
+
# becomes a log-sum-exp: for each sample, entry i stores the sum of scores of
|
355 |
+
# all possible tag sequences so far, that end in tag i
|
356 |
+
# shape: (batch_size, num_tags)
|
357 |
+
next_score = torch.logsumexp(next_score, dim=1)
|
358 |
+
|
359 |
+
# Set score to the next score if this timestep is valid (mask == 1)
|
360 |
+
# shape: (batch_size, num_tags)
|
361 |
+
score = torch.where(mask[i].unsqueeze(1).bool(), next_score, score)
|
362 |
+
|
363 |
+
# End transition score
|
364 |
+
# shape: (batch_size, num_tags)
|
365 |
+
score += self.end_transitions
|
366 |
+
|
367 |
+
# Sum (log-sum-exp) over all possible tags
|
368 |
+
# shape: (batch_size,)
|
369 |
+
return torch.logsumexp(score, dim=1)
|
370 |
+
|
371 |
+
def _viterbi_decode(self, emissions: torch.FloatTensor,
|
372 |
+
mask: torch.ByteTensor) -> List[List[int]]:
|
373 |
+
# emissions: (seq_length, batch_size, num_tags)
|
374 |
+
# mask: (seq_length, batch_size)
|
375 |
+
assert emissions.dim() == 3 and mask.dim() == 2
|
376 |
+
assert emissions.shape[:2] == mask.shape
|
377 |
+
assert emissions.size(2) == self.num_tags
|
378 |
+
assert mask[0].all()
|
379 |
+
|
380 |
+
seq_length, batch_size = mask.shape
|
381 |
+
|
382 |
+
# Start transition and first emission
|
383 |
+
# shape: (batch_size, num_tags)
|
384 |
+
score = self.start_transitions + emissions[0]
|
385 |
+
history = []
|
386 |
+
|
387 |
+
# score is a tensor of size (batch_size, num_tags) where for every batch,
|
388 |
+
# value at column j stores the score of the best tag sequence so far that ends
|
389 |
+
# with tag j
|
390 |
+
# history saves where the best tags candidate transitioned from; this is used
|
391 |
+
# when we trace back the best tag sequence
|
392 |
+
|
393 |
+
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
|
394 |
+
# for every possible next tag
|
395 |
+
for i in range(1, seq_length):
|
396 |
+
# Broadcast viterbi score for every possible next tag
|
397 |
+
# shape: (batch_size, num_tags, 1)
|
398 |
+
broadcast_score = score.unsqueeze(2)
|
399 |
+
|
400 |
+
# Broadcast emission score for every possible current tag
|
401 |
+
# shape: (batch_size, 1, num_tags)
|
402 |
+
broadcast_emission = emissions[i].unsqueeze(1)
|
403 |
+
|
404 |
+
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
|
405 |
+
# for each sample, entry at row i and column j stores the score of the best
|
406 |
+
# tag sequence so far that ends with transitioning from tag i to tag j and emitting
|
407 |
+
# shape: (batch_size, num_tags, num_tags)
|
408 |
+
next_score = broadcast_score + self.transitions + broadcast_emission
|
409 |
+
|
410 |
+
# Find the maximum score over all possible current tag
|
411 |
+
# shape: (batch_size, num_tags)
|
412 |
+
next_score, indices = next_score.max(dim=1)
|
413 |
+
|
414 |
+
# Set score to the next score if this timestep is valid (mask == 1)
|
415 |
+
# and save the index that produces the next score
|
416 |
+
# shape: (batch_size, num_tags)
|
417 |
+
score = torch.where(mask[i].unsqueeze(1).bool(), next_score, score)
|
418 |
+
history.append(indices)
|
419 |
+
|
420 |
+
# End transition score
|
421 |
+
# shape: (batch_size, num_tags)
|
422 |
+
score += self.end_transitions
|
423 |
+
|
424 |
+
# Now, compute the best path for each sample
|
425 |
+
|
426 |
+
# shape: (batch_size,)
|
427 |
+
seq_ends = mask.long().sum(dim=0) - 1
|
428 |
+
best_tags_list = []
|
429 |
+
|
430 |
+
for idx in range(batch_size):
|
431 |
+
# Find the tag which maximizes the score at the last timestep; this is our best tag
|
432 |
+
# for the last timestep
|
433 |
+
_, best_last_tag = score[idx].max(dim=0)
|
434 |
+
best_tags = [best_last_tag.item()]
|
435 |
+
|
436 |
+
# We trace back where the best last tag comes from, append that to our best tag
|
437 |
+
# sequence, and trace it back again, and so on
|
438 |
+
for hist in reversed(history[:seq_ends[idx]]):
|
439 |
+
best_last_tag = hist[idx][best_tags[-1]]
|
440 |
+
best_tags.append(best_last_tag.item())
|
441 |
+
|
442 |
+
# Reverse the order because we start from the last timestep
|
443 |
+
best_tags.reverse()
|
444 |
+
best_tags_list.append(best_tags)
|
445 |
+
|
446 |
+
return best_tags_list
|