ChatRex-7B / modeling_chatrex.py
CRIS-Yang's picture
Model Initial Update 1
7b6241f verified
raw
history blame
33.5 kB
import json
import logging
import math
import os
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from open_clip.factory import get_model_config, load_state_dict
from open_clip.model import (CLIPTextCfg, CLIPVisionCfg, _build_text_tower,
_build_vision_tower,
convert_to_custom_text_state_dict)
from open_clip.transformer import text_global_pool
from torch import nn
from torchvision.ops import roi_align
from transformers import (CONFIG_MAPPING, AutoConfig, AutoModel,
AutoModelForCausalLM, GenerationConfig,
PretrainedConfig, PreTrainedModel, StoppingCriteria,
StoppingCriteriaList)
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from transformers.generation import GenerationConfig
from transformers.modeling_utils import load_state_dict
from transformers.utils import logging, strtobool
from .convnext import ConvNextVisionEncoder
logger = logging.get_logger(__name__)
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN_INDEX = 0
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
# For Objects
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
DEFAULT_OBJECT_INDEX = -300
# For Grounding
DEFAULT_GROUNDING_START = "<ground>"
DEFAULT_GROUNDING_END = "</ground>"
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"
def is_fsdp_enabled():
return (
torch.distributed.is_available()
and torch.distributed.is_initialized()
and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
)
def get_token_slices(input_ids: torch.Tensor):
"""
Get slices of tokens based on special markers in the input tensor.
Args:
input_ids (torch.Tensor): A tensor of token IDs where IMAGE_TOKEN_INDEX represents an image token,
DEFAULT_OBJECT_INDEX represents an object token, and all other values represent text tokens.
Returns:
List[Dict[str, Any]]: A list of dictionaries where each dictionary contains the type of the
token slice ('text', 'image', 'object') and the span as a list of start and end indices.
"""
# define type markers and corresponding types
type_map = {IMAGE_TOKEN_INDEX: "image", DEFAULT_OBJECT_INDEX: "object"}
# find the positions of special markers
image_indices = torch.where(input_ids == IMAGE_TOKEN_INDEX)[0]
object_indices = torch.where(input_ids == DEFAULT_OBJECT_INDEX)[0]
if len(object_indices) > 0:
has_object = True
else:
has_object = False
# merge all the positions of special markers
special_indices = torch.cat((image_indices, object_indices))
special_indices, _ = torch.sort(special_indices)
special_tokens = input_ids[special_indices]
slices = []
start_idx = 0
for i, idx in enumerate(special_indices):
if start_idx < idx:
slices.append({"type": "text", "span": [start_idx, idx.item()]})
token_type = type_map[special_tokens[i].item()]
slices.append({"type": token_type, "span": [idx.item(), idx.item() + 1]})
start_idx = idx.item() + 1
if start_idx < len(input_ids):
slices.append({"type": "text", "span": [start_idx, len(input_ids)]})
return slices, has_object
def prepare_inputs_labels_for_multimodal(
llm,
input_ids: torch.LongTensor = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
bbox_feats=None,
extra_llm_input_embed: nn.Embedding = None,
**kwargs,
):
if pixel_values is None:
return {
"input_ids": input_ids,
"position_ids": position_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"inputs_embeds": None,
"labels": labels,
}
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_inputs_embeds = []
new_labels = []
cur_image_idx = 0
cur_object_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_pixel_values = pixel_values[cur_image_idx]
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
cur_inputs_embeds = torch.cat(
[cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0
)
new_inputs_embeds.append(cur_inputs_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
cur_object_idx += 1
continue
cur_labels = labels[batch_idx]
token_slices, has_object = get_token_slices(cur_input_ids)
result_input_embeddings = []
result_output_labels = []
cur_gt_bnox_indice = 0
for slice in token_slices:
slice_type = slice["type"]
slice_span = slice["span"]
if slice_type == "text":
cur_input_ids_noim = cur_input_ids[slice_span[0] : slice_span[1]]
cur_labels_noim = cur_labels[slice_span[0] : slice_span[1]]
cur_input_embeds = llm.get_input_embeddings()(cur_input_ids_noim)
result_input_embeddings.append(cur_input_embeds)
result_output_labels.append(cur_labels_noim)
elif slice_type == "image":
cur_input_embeds = pixel_values[cur_image_idx]
result_input_embeddings.append(cur_input_embeds)
result_output_labels.append(
torch.full(
(cur_input_embeds.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_image_idx += 1
elif slice_type == "object":
try:
result_input_embeddings.append(
bbox_feats[cur_object_idx][cur_gt_bnox_indice].unsqueeze(0)
)
except:
raise ValueError(
f"current boxe_feats.shape: {bbox_feats[cur_object_idx].shape}, "
)
cur_gt_bnox_indice += 1
result_output_labels.append(
torch.full(
(1,),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_object_idx += 1
result_input_embeddings = torch.cat(result_input_embeddings)
result_output_labels = torch.cat(result_output_labels)
assert len(result_output_labels) == len(result_input_embeddings)
new_inputs_embeds.append(result_input_embeddings)
new_labels.append(result_output_labels)
# Combine them
max_len = max(x.shape[0] for x in new_inputs_embeds)
batch_size = len(new_inputs_embeds)
new_inputs_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(
zip(new_inputs_embeds, new_labels)
):
cur_len = cur_new_embed.shape[0]
new_inputs_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return {
"input_ids": None,
"position_ids": position_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"inputs_embeds": new_inputs_embeds,
"labels": new_labels,
}
class StopWordStoppingCriteria(StoppingCriteria):
"""StopWord stopping criteria."""
def __init__(self, tokenizer, stop_word):
self.tokenizer = tokenizer
self.stop_word = stop_word
self.length = len(self.stop_word)
def __call__(self, input_ids, *args, **kwargs) -> bool:
cur_text = self.tokenizer.decode(input_ids[0])
cur_text = cur_text.replace('\r', '').replace('\n', '')
return cur_text[-self.length:] == self.stop_word
def get_stop_criteria(
tokenizer,
stop_words=[],
):
stop_criteria = StoppingCriteriaList()
for word in stop_words:
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
return stop_criteria
class DualPathFuseModule(nn.Module):
# change channel+gate+sum
def __init__(self, low_res_dim, high_res_dim, zero_init=True):
super().__init__()
self.slow_conv = nn.Conv2d(high_res_dim, high_res_dim, 1)
self.slow_proj = nn.Conv2d(high_res_dim, low_res_dim, 1)
self.fast_conv = nn.Conv2d(
low_res_dim, low_res_dim, 7, padding=3, groups=low_res_dim
)
self.fast_proj = nn.Conv2d(low_res_dim, low_res_dim, 1)
self.gate = nn.Sequential(
nn.Linear(low_res_dim * 2, low_res_dim // 2),
nn.GELU(),
nn.Linear(low_res_dim // 2, 1),
)
nn.init.xavier_uniform_(self.slow_conv.weight)
nn.init.xavier_uniform_(self.fast_conv.weight)
nn.init.zeros_(self.slow_conv.bias)
nn.init.zeros_(self.fast_conv.bias)
if zero_init:
nn.init.zeros_(self.slow_proj.weight)
nn.init.zeros_(self.fast_proj.weight)
else:
nn.init.xavier_uniform_(self.slow_proj.weight)
nn.init.xavier_uniform_(self.fast_proj.weight)
nn.init.zeros_(self.slow_proj.bias)
nn.init.zeros_(self.fast_proj.bias)
def forward(self, low_res_feat, high_res_feat, sampler=None):
b, c, h, w = high_res_feat.shape # (2, 1536, 24, 24)
_, _, d = low_res_feat.shape # (2, 576, 1024)
high_res_feat = self.slow_proj(
F.gelu(self.slow_conv(high_res_feat))
) # (2, 1024, 24, 24)
high_res_feat = high_res_feat.view(b, d, -1).transpose(1, 2) # (2, 576, 1024)
dst_size = int(math.sqrt(low_res_feat.shape[1])) # 24
low_res_feat = low_res_feat.transpose(1, 2).view(
b, d, dst_size, dst_size
) # (2, 1024, 24, 24)
low_res_feat = low_res_feat + self.fast_proj(
F.gelu(self.fast_conv(low_res_feat))
)
low_res_feat = low_res_feat.view(b, d, dst_size * dst_size).transpose(
1, 2
) # (2, 576, 1024)
gate = self.gate(
torch.cat([low_res_feat, high_res_feat], -1).mean(1)
).unsqueeze(
1
) # (2, 1, 1)
low_res_feat = low_res_feat + high_res_feat * gate.tanh()
return low_res_feat
class ProjectorConfig(PretrainedConfig):
model_type = "projector"
_auto_class = "AutoConfig"
def __init__(
self,
visual_hidden_size=4096,
llm_hidden_size=4096,
depth=2,
hidden_act="gelu",
bias=True,
**kwargs,
):
self.visual_hidden_size = visual_hidden_size
self.llm_hidden_size = llm_hidden_size
self.depth = depth
self.hidden_act = hidden_act
self.bias = bias
super().__init__(**kwargs)
class ProjectorModel(PreTrainedModel):
_auto_class = "AutoModel"
config_class = ProjectorConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = []
def __init__(self, config: ProjectorConfig) -> None:
super().__init__(config)
self.gradient_checkpointing = False
modules = [
nn.Linear(
config.visual_hidden_size, config.llm_hidden_size, bias=config.bias
)
]
for _ in range(1, config.depth):
modules.append(ACT2FN[config.hidden_act])
modules.append(
nn.Linear(
config.llm_hidden_size, config.llm_hidden_size, bias=config.bias
)
)
self.model = nn.Sequential(*modules)
def enable_input_require_grads(self):
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
self.model.register_forward_hook(make_inputs_require_grad)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, ProjectorModel):
module.gradient_checkpointing = value
def forward(self, x):
layer_outputs = self.model(x)
return layer_outputs
def gen_sineembed_for_position(pos_tensor, dim_of_pos_feats):
"""Generate sine position embedding from a position tensor.
Args:
pos_tensor (torch.Tensor): shape: [batch_size, N, 4]. the last dimension is [cx, cy, w, h] in
normalized coordinates in range [0, 1].
out_dim (int): the output dimension of the position embedding.
Returns:
pos (torch.Tensor): shape: [batch_size, N, out_dim].
"""
scale = 2 * math.pi
dim_t = torch.arange(
dim_of_pos_feats, dtype=torch.float32, device=pos_tensor.device
)
dim_t = 10000 ** (2 * (dim_t // 2) / dim_of_pos_feats)
x_embed = pos_tensor[:, :, 0] * scale
y_embed = pos_tensor[:, :, 1] * scale
pos_x = x_embed[:, :, None] / dim_t
pos_y = y_embed[:, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3
).flatten(2)
pos_y = torch.stack(
(pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3
).flatten(2)
if pos_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=2)
elif pos_tensor.size(-1) == 4:
w_embed = pos_tensor[:, :, 2] * scale
pos_w = w_embed[:, :, None] / dim_t
pos_w = torch.stack(
(pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3
).flatten(2)
h_embed = pos_tensor[:, :, 3] * scale
pos_h = h_embed[:, :, None] / dim_t
pos_h = torch.stack(
(pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3
).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
else:
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
return pos
class MultiLevelROIVisualPrompt(nn.Module):
"""Initialize the MultiLevelROIVisualPrompt.
Args:
output_size (Optional[int]): The size of the output. Default is None.
channel_per_level (List[int]): List of channels per level. Default is [192, 384, 768, 1536].
spatial_scale (Optional[float]): The spatial scale factor. Default is None.
with_additional_projection (bool): Whether to use additional projection. Default is False.
visual_prompt_hidden_size (int): The hidden size of the visual prompt. Default is 1024.
add_pos_embedding (bool): Whether to add position embedding. Default is False.
pos_embedding_dim (int): The dimension of the position embedding. Default is 1024.
"""
def __init__(
self,
output_size: int = None,
channel_per_level: List[int] = [192, 384, 768, 1536],
spatail_scale: float = None,
visual_prompt_hidden_size: bool = 1024,
add_pos_embedding: bool = False,
pos_embedding_dim: int = 1024,
):
super(MultiLevelROIVisualPrompt, self).__init__()
self.output_size = output_size
self.channel_per_level = channel_per_level
self.spatail_scale = spatail_scale
self.add_pos_embedding = add_pos_embedding
self.pos_embedding_dim = pos_embedding_dim
def __call__(
self,
multi_level_features: List[torch.Tensor],
boxes: Union[torch.Tensor, List[torch.Tensor]],
) -> torch.Tensor:
"""Performs Region of Interest (RoI) Align operator on multi-level features. The RoI
feature on each scale will go through a different linear layer for projection. Different
RoI features will be summed up and then average pooled.
Args:
multi_level_features (Listp[Tensor[N, C, H, W]]): Feature maps from different levels
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from.
Returns:
Tensor[1, K, C]: The output tensor that has the shape KxC, where K is the number of RoIs
"""
boxes[0] = boxes[0].float()
concat_multi_level_feature = []
max_height = max([feature.shape[2] for feature in multi_level_features])
max_width = max([feature.shape[3] for feature in multi_level_features])
# interpolate to the same size
for level, feature in enumerate(multi_level_features):
if level != 0:
concat_multi_level_feature.append(
F.interpolate(
feature.float(),
size=(max_height, max_width),
mode="bilinear",
align_corners=False,
)
)
else:
concat_multi_level_feature.append(feature.float())
concat_multi_level_feature = torch.cat(concat_multi_level_feature, dim=1)
out_box_feat = roi_align(
concat_multi_level_feature,
boxes,
output_size=self.output_size,
spatial_scale=self.spatail_scale,
)
# Average Pooling -> n,c -> 1,n,c
out_box_feat = out_box_feat.mean(dim=(2, 3)).reshape(
1, out_box_feat.shape[0], out_box_feat.shape[1]
)
if self.add_pos_embedding:
# note that this boxes is in xyxy, unormalized format, so we need to normalize it first
boxes = boxes[0] # (N, 4)
boxes = boxes.to(out_box_feat.dtype)
original_img_width = max_width / self.spatail_scale
original_img_height = max_height / self.spatail_scale
boxes[:, [0, 2]] = boxes[:, [0, 2]] / original_img_width
boxes[:, [1, 3]] = boxes[:, [1, 3]] / original_img_height
# convert from xyxy to cx, cy, w, h
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
pos_embed = gen_sineembed_for_position(
boxes.unsqueeze(0), self.pos_embedding_dim // 4
)
out_box_feat = out_box_feat + pos_embed
return out_box_feat
class ChatRexAuxConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of ChatRexAux model.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
vision_aux_config (`Union[AutoConfig, dict]`, *optional*, defaults to `OpenCLIPVisionTower`):
visual_prompt_encoder (`Union[AutoConfig, dict]`, *optional*, defaults to `MultiLevelROIVisualPrompt`):
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32000):
The image token index to encode the image prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
Example:
```python
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a Llava llava-1.5-7b style configuration
>>> configuration = LlavaConfig(vision_config, text_config)
>>> # Initializing a model from the llava-1.5-7b style configuration
>>> model = LlavaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "chatrex"
is_composition = False
def __init__(
self,
vision_config=None,
vision_aux_config=None,
visual_prompt_encoder_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32000,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
projector_depth=2,
visual_prompt_hidden_size=2880,
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.projector_depth = projector_depth
self.visual_prompt_hidden_size = visual_prompt_hidden_size
self.visual_prompt_encoder_config = visual_prompt_encoder_config
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"]
if "model_type" in vision_config
else "clip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vision_config = vision_config
self.vision_aux_config = vision_aux_config
if isinstance(text_config, dict):
text_config["model_type"] = (
text_config["model_type"] if "model_type" in text_config else "llama"
)
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
self.text_config = text_config
super().__init__(**kwargs)
class ChatRexAuxPreTrainedModel(PreTrainedModel):
config_class = ChatRexAuxConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlavaVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
# def _init_weights(self, module):
# # important: this ported version of Llava isn't meant for training from scratch - only
# # inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
# std = (
# self.config.initializer_range
# if hasattr(self.config, "initializer_range")
# else self.config.text_config.initializer_range
# )
# if hasattr(module, "class_embedding"):
# module.class_embedding.data.normal_(mean=0.0, std=std)
# if isinstance(module, (nn.Linear, nn.Conv2d)):
# module.weight.data.normal_(mean=0.0, std=std)
# if module.bias is not None:
# module.bias.data.zero_()
# elif isinstance(module, nn.Embedding):
# module.weight.data.normal_(mean=0.0, std=std)
# if module.padding_idx is not None:
# module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
class ChatRexAuxForConditionalGeneration(ChatRexAuxPreTrainedModel):
def __init__(self, config: ChatRexAuxConfig):
super().__init__(config)
# low resolusion vision encoder
self.vision_encoder = AutoModel.from_config(config.vision_config)
# high resolusion vision encoder
self.vision_encoder_aux = ConvNextVisionEncoder()
# vision projector
projector_config = ProjectorConfig(
visual_hidden_size=config.vision_config.hidden_size,
llm_hidden_size=config.text_config.hidden_size,
depth=config.projector_depth,
)
self.projector = ProjectorModel(projector_config)
# visual prompt encoder
vp_projector_config = ProjectorConfig(
visual_hidden_size=config.visual_prompt_hidden_size,
llm_hidden_size=config.text_config.hidden_size,
depth=config.projector_depth,
)
self.vp_projector = ProjectorModel(vp_projector_config)
# fuser
self.fuser = DualPathFuseModule(
low_res_dim=config.vision_config.hidden_size,
high_res_dim=1536,
)
# visual prompt encoder
self.vp_encoder = MultiLevelROIVisualPrompt(
output_size=7,
channel_per_level=[192, 384, 768, 1536],
spatail_scale=192 / 768,
add_pos_embedding=True,
pos_embedding_dim=2880,
)
# genconfig
self.gen_config = None
self.vocab_size = config.text_config.vocab_size
self.llm = AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
self.pad_token_id = (
self.config.pad_token_id if self.config.pad_token_id is not None else -1
)
self.post_init()
def _prepare_data_for_llm(self, data):
if "pixel_values" in data:
visual_outputs = self.vision_encoder(
data["pixel_values"].to(self.vision_encoder.dtype),
output_hidden_states=True,
)
if type(self.vision_encoder).__name__ in [
"CLIPVisionModel",
"CLIPVisionModelAnyRes",
]:
visual_outputs = visual_outputs.hidden_states[-2][
:, 1:
]
elif type(self.vision_encoder).__name__ == "SiglipVisionModel":
visual_outputs = visual_outputs.hidden_states[-2]
else:
raise NotImplementedError
# aux encoder
if self.vision_encoder_aux is not None:
pixels_aux = []
for pixels in data["pixel_values_aux"]:
if pixels.dim() == 3:
pixels = pixels.unsqueeze(0)
elif pixels.dim() == 4:
pixels = pixels.permute(1, 0, 2, 3)
pixels_aux.append(pixels)
visual_outputs_aux = torch.cat(
pixels_aux, dim=0
) # shape (2, 3, 768, 768)
aux_output = self.vision_encoder_aux(
visual_outputs_aux
)
visual_outputs_aux = aux_output["image_features"]
last_feat = aux_output["last_feat"] # (B, 1536, 24, 24)
# fuser
fuse_features = self.fuser(
low_res_feat=visual_outputs, high_res_feat=last_feat
) # (2, 576, 1024)
pixel_values = self.projector(fuse_features)
data["pixel_values"] = pixel_values
# extract visual prompt features
bbox_visual_outputs = []
if "gt_boxes" in data:
for batch_idx, boxes in enumerate(data["gt_boxes"]):
if len(boxes) == 0:
bbox_visual_outputs.append(None)
continue
multi_level_aux_features = [
visual_output_aux[batch_idx].unsqueeze(0)
for visual_output_aux in visual_outputs_aux
]
boxes = boxes.to(torch.float32)
out_vp_feat = self.vp_encoder(
multi_level_aux_features,
[boxes],
).squeeze(0)
out_vp_feat = out_vp_feat.to(pixel_values.dtype)
out_vp_feat = self.vp_projector(out_vp_feat)
bbox_visual_outputs.append(out_vp_feat)
# b,n,c
data["bbox_feats"] = bbox_visual_outputs
data = prepare_inputs_labels_for_multimodal(llm=self.llm, **data)
return data
def generate(self, data_dict: Dict[str, Any], gen_config=None, tokenizer=None):
"""Perform inference on the given data.
Args:
data_dict (Dict[str, Any]): The data to perform inference on.
Returns:
str: The answer to the question.
"""
data_dict = self._prepare_data_for_llm(data_dict)
data_dict["inputs_embeds"] = data_dict["inputs_embeds"].to(self.llm.dtype)
stop_criteria = get_stop_criteria(
tokenizer=tokenizer, stop_words=[]
)
generate_output = self.llm.generate(
**data_dict,
generation_config=self.gen_config if gen_config is None else gen_config,
streamer=None,
bos_token_id=tokenizer.bos_token_id,
stopping_criteria=stop_criteria,
)
print(f'generate_output:', generate_output)
prediction = tokenizer.decode(
generate_output[0], skip_special_tokens=False
).strip()
prediction = prediction.replace("<s>", "").replace("</s>", "").strip()
return prediction
AutoConfig.register("chatrex", ChatRexAuxConfig)
AutoModelForCausalLM.register(ChatRexAuxConfig, ChatRexAuxForConditionalGeneration)