dariuslimzh commited on
Commit
4d7c249
1 Parent(s): 45ec571

Training completed

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilroberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2003
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: RoBERTa_conll_epoch_10
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: validation
24
+ args: conll2003
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9443059019118869
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9559071019858634
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9500710880655683
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9882329477463103
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # RoBERTa_conll_epoch_10
44
+
45
+ This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0906
48
+ - Precision: 0.9443
49
+ - Recall: 0.9559
50
+ - F1: 0.9501
51
+ - Accuracy: 0.9882
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0839 | 1.0 | 1756 | 0.0705 | 0.9055 | 0.9303 | 0.9177 | 0.9827 |
83
+ | 0.0454 | 2.0 | 3512 | 0.0690 | 0.9257 | 0.9431 | 0.9343 | 0.9853 |
84
+ | 0.0272 | 3.0 | 5268 | 0.0590 | 0.9310 | 0.9495 | 0.9402 | 0.9865 |
85
+ | 0.0183 | 4.0 | 7024 | 0.0803 | 0.9324 | 0.9515 | 0.9419 | 0.9862 |
86
+ | 0.0129 | 5.0 | 8780 | 0.0747 | 0.9433 | 0.9517 | 0.9475 | 0.9872 |
87
+ | 0.0079 | 6.0 | 10536 | 0.0792 | 0.9359 | 0.9534 | 0.9446 | 0.9874 |
88
+ | 0.0055 | 7.0 | 12292 | 0.0785 | 0.9457 | 0.9549 | 0.9503 | 0.9879 |
89
+ | 0.003 | 8.0 | 14048 | 0.0881 | 0.9438 | 0.9561 | 0.9499 | 0.9879 |
90
+ | 0.001 | 9.0 | 15804 | 0.0875 | 0.9448 | 0.9562 | 0.9505 | 0.9879 |
91
+ | 0.0008 | 10.0 | 17560 | 0.0906 | 0.9443 | 0.9559 | 0.9501 | 0.9882 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.40.2
97
+ - Pytorch 2.3.0+cu121
98
+ - Datasets 2.19.1
99
+ - Tokenizers 0.19.1