dariuslimzh
commited on
Commit
•
4d7c249
1
Parent(s):
45ec571
Training completed
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilroberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2003
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: RoBERTa_conll_epoch_10
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2003
|
21 |
+
type: conll2003
|
22 |
+
config: conll2003
|
23 |
+
split: validation
|
24 |
+
args: conll2003
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.9443059019118869
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9559071019858634
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.9500710880655683
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9882329477463103
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# RoBERTa_conll_epoch_10
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the conll2003 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0906
|
48 |
+
- Precision: 0.9443
|
49 |
+
- Recall: 0.9559
|
50 |
+
- F1: 0.9501
|
51 |
+
- Accuracy: 0.9882
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 5e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0839 | 1.0 | 1756 | 0.0705 | 0.9055 | 0.9303 | 0.9177 | 0.9827 |
|
83 |
+
| 0.0454 | 2.0 | 3512 | 0.0690 | 0.9257 | 0.9431 | 0.9343 | 0.9853 |
|
84 |
+
| 0.0272 | 3.0 | 5268 | 0.0590 | 0.9310 | 0.9495 | 0.9402 | 0.9865 |
|
85 |
+
| 0.0183 | 4.0 | 7024 | 0.0803 | 0.9324 | 0.9515 | 0.9419 | 0.9862 |
|
86 |
+
| 0.0129 | 5.0 | 8780 | 0.0747 | 0.9433 | 0.9517 | 0.9475 | 0.9872 |
|
87 |
+
| 0.0079 | 6.0 | 10536 | 0.0792 | 0.9359 | 0.9534 | 0.9446 | 0.9874 |
|
88 |
+
| 0.0055 | 7.0 | 12292 | 0.0785 | 0.9457 | 0.9549 | 0.9503 | 0.9879 |
|
89 |
+
| 0.003 | 8.0 | 14048 | 0.0881 | 0.9438 | 0.9561 | 0.9499 | 0.9879 |
|
90 |
+
| 0.001 | 9.0 | 15804 | 0.0875 | 0.9448 | 0.9562 | 0.9505 | 0.9879 |
|
91 |
+
| 0.0008 | 10.0 | 17560 | 0.0906 | 0.9443 | 0.9559 | 0.9501 | 0.9882 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.40.2
|
97 |
+
- Pytorch 2.3.0+cu121
|
98 |
+
- Datasets 2.19.1
|
99 |
+
- Tokenizers 0.19.1
|