prateeky2806's picture
Training in progress, step 600
977f4fb
raw
history blame
18.7 kB
{
"best_metric": 1.0200624465942383,
"best_model_checkpoint": "./output_v2/7b_cluster07_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_07/checkpoint-600",
"epoch": 0.3815580286168522,
"global_step": 600,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 1.0736,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 1.1041,
"step": 20
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 1.0818,
"step": 30
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 1.0408,
"step": 40
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 1.0985,
"step": 50
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 1.0245,
"step": 60
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 1.0205,
"step": 70
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 1.0811,
"step": 80
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 1.0852,
"step": 90
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 1.0296,
"step": 100
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 1.0943,
"step": 110
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.9857,
"step": 120
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 1.0324,
"step": 130
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 1.0134,
"step": 140
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 1.0533,
"step": 150
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 1.0667,
"step": 160
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 1.0506,
"step": 170
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 1.0653,
"step": 180
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 1.0372,
"step": 190
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 1.0485,
"step": 200
},
{
"epoch": 0.13,
"eval_loss": 1.0341941118240356,
"eval_runtime": 172.5264,
"eval_samples_per_second": 5.796,
"eval_steps_per_second": 2.898,
"step": 200
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.4648810025502313,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.7093023255813954,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5588235294117647,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.115347789702621,
"step": 200
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.987,
"step": 210
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 1.0399,
"step": 220
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 1.044,
"step": 230
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 1.0491,
"step": 240
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 1.0216,
"step": 250
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 1.0973,
"step": 260
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.996,
"step": 270
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 1.0253,
"step": 280
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 1.0439,
"step": 290
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 1.0244,
"step": 300
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 1.0299,
"step": 310
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 1.0737,
"step": 320
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.9939,
"step": 330
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 1.032,
"step": 340
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 1.0291,
"step": 350
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 1.0575,
"step": 360
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 1.0685,
"step": 370
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 1.0342,
"step": 380
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 1.0055,
"step": 390
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 1.0584,
"step": 400
},
{
"epoch": 0.25,
"eval_loss": 1.0254805088043213,
"eval_runtime": 172.7517,
"eval_samples_per_second": 5.789,
"eval_steps_per_second": 2.894,
"step": 400
},
{
"epoch": 0.25,
"mmlu_eval_accuracy": 0.4742191978590581,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5588235294117647,
"mmlu_eval_accuracy_prehistory": 0.37142857142857144,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.6111111111111112,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.038680466208072,
"step": 400
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 1.0107,
"step": 410
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 1.0667,
"step": 420
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.9837,
"step": 430
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 1.0534,
"step": 440
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.9922,
"step": 450
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 1.0146,
"step": 460
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 1.0438,
"step": 470
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.9886,
"step": 480
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.988,
"step": 490
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 1.0228,
"step": 500
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 1.0173,
"step": 510
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.9993,
"step": 520
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 1.0261,
"step": 530
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.9884,
"step": 540
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.9894,
"step": 550
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 1.0305,
"step": 560
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.9754,
"step": 570
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 1.0075,
"step": 580
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 1.0219,
"step": 590
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 1.0059,
"step": 600
},
{
"epoch": 0.38,
"eval_loss": 1.0200624465942383,
"eval_runtime": 172.8545,
"eval_samples_per_second": 5.785,
"eval_steps_per_second": 2.893,
"step": 600
},
{
"epoch": 0.38,
"mmlu_eval_accuracy": 0.46940456315845464,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.37142857142857144,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.0641063005121196,
"step": 600
}
],
"max_steps": 5000,
"num_train_epochs": 4,
"total_flos": 1.1428667466448896e+17,
"trial_name": null,
"trial_params": null
}