prateeky2806's picture
Training in progress, step 1000
be05cd9
{
"best_metric": 0.6964578628540039,
"best_model_checkpoint": "./output_v2/7b_cluster06_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_06/checkpoint-800",
"epoch": 2.2988505747126435,
"global_step": 1000,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.8662,
"step": 10
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7634,
"step": 20
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8485,
"step": 30
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7866,
"step": 40
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7199,
"step": 50
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7387,
"step": 60
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.705,
"step": 70
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.7617,
"step": 80
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7022,
"step": 90
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.715,
"step": 100
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.6946,
"step": 110
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.7201,
"step": 120
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.6633,
"step": 130
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.687,
"step": 140
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.7582,
"step": 150
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.7141,
"step": 160
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.7852,
"step": 170
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.7228,
"step": 180
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.7682,
"step": 190
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.6408,
"step": 200
},
{
"epoch": 0.46,
"eval_loss": 0.7120537757873535,
"eval_runtime": 248.212,
"eval_samples_per_second": 4.029,
"eval_steps_per_second": 2.014,
"step": 200
},
{
"epoch": 0.46,
"mmlu_eval_accuracy": 0.47641762588949127,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.625,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.5454545454545454,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.048742408132273,
"step": 200
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.7296,
"step": 210
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.7013,
"step": 220
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.7162,
"step": 230
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.6838,
"step": 240
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.7733,
"step": 250
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.6866,
"step": 260
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.7496,
"step": 270
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.7202,
"step": 280
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.6604,
"step": 290
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.6567,
"step": 300
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.7013,
"step": 310
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.7217,
"step": 320
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.7105,
"step": 330
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.7674,
"step": 340
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.709,
"step": 350
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.6924,
"step": 360
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.7067,
"step": 370
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.7528,
"step": 380
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.6967,
"step": 390
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.7424,
"step": 400
},
{
"epoch": 0.92,
"eval_loss": 0.7028327584266663,
"eval_runtime": 248.3077,
"eval_samples_per_second": 4.027,
"eval_steps_per_second": 2.014,
"step": 400
},
{
"epoch": 0.92,
"mmlu_eval_accuracy": 0.4534692920503279,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.7727272727272727,
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.034321005696883,
"step": 400
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.722,
"step": 410
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.7236,
"step": 420
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.7075,
"step": 430
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.6595,
"step": 440
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.6631,
"step": 450
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.6957,
"step": 460
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.6092,
"step": 470
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.6014,
"step": 480
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.6629,
"step": 490
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.6606,
"step": 500
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.6623,
"step": 510
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.6528,
"step": 520
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.619,
"step": 530
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.6822,
"step": 540
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.6897,
"step": 550
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.6194,
"step": 560
},
{
"epoch": 1.31,
"learning_rate": 0.0002,
"loss": 0.6854,
"step": 570
},
{
"epoch": 1.33,
"learning_rate": 0.0002,
"loss": 0.6408,
"step": 580
},
{
"epoch": 1.36,
"learning_rate": 0.0002,
"loss": 0.6705,
"step": 590
},
{
"epoch": 1.38,
"learning_rate": 0.0002,
"loss": 0.6806,
"step": 600
},
{
"epoch": 1.38,
"eval_loss": 0.7048470377922058,
"eval_runtime": 248.1356,
"eval_samples_per_second": 4.03,
"eval_steps_per_second": 2.015,
"step": 600
},
{
"epoch": 1.38,
"mmlu_eval_accuracy": 0.45527626426304835,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.4375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.38235294117647056,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.31176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 0.8697303273707784,
"step": 600
},
{
"epoch": 1.4,
"learning_rate": 0.0002,
"loss": 0.6112,
"step": 610
},
{
"epoch": 1.43,
"learning_rate": 0.0002,
"loss": 0.6605,
"step": 620
},
{
"epoch": 1.45,
"learning_rate": 0.0002,
"loss": 0.6882,
"step": 630
},
{
"epoch": 1.47,
"learning_rate": 0.0002,
"loss": 0.6504,
"step": 640
},
{
"epoch": 1.49,
"learning_rate": 0.0002,
"loss": 0.6036,
"step": 650
},
{
"epoch": 1.52,
"learning_rate": 0.0002,
"loss": 0.5717,
"step": 660
},
{
"epoch": 1.54,
"learning_rate": 0.0002,
"loss": 0.669,
"step": 670
},
{
"epoch": 1.56,
"learning_rate": 0.0002,
"loss": 0.6218,
"step": 680
},
{
"epoch": 1.59,
"learning_rate": 0.0002,
"loss": 0.6473,
"step": 690
},
{
"epoch": 1.61,
"learning_rate": 0.0002,
"loss": 0.661,
"step": 700
},
{
"epoch": 1.63,
"learning_rate": 0.0002,
"loss": 0.6366,
"step": 710
},
{
"epoch": 1.66,
"learning_rate": 0.0002,
"loss": 0.6217,
"step": 720
},
{
"epoch": 1.68,
"learning_rate": 0.0002,
"loss": 0.6534,
"step": 730
},
{
"epoch": 1.7,
"learning_rate": 0.0002,
"loss": 0.6491,
"step": 740
},
{
"epoch": 1.72,
"learning_rate": 0.0002,
"loss": 0.6436,
"step": 750
},
{
"epoch": 1.75,
"learning_rate": 0.0002,
"loss": 0.6816,
"step": 760
},
{
"epoch": 1.77,
"learning_rate": 0.0002,
"loss": 0.6326,
"step": 770
},
{
"epoch": 1.79,
"learning_rate": 0.0002,
"loss": 0.6431,
"step": 780
},
{
"epoch": 1.82,
"learning_rate": 0.0002,
"loss": 0.6536,
"step": 790
},
{
"epoch": 1.84,
"learning_rate": 0.0002,
"loss": 0.659,
"step": 800
},
{
"epoch": 1.84,
"eval_loss": 0.6964578628540039,
"eval_runtime": 248.2292,
"eval_samples_per_second": 4.029,
"eval_steps_per_second": 2.014,
"step": 800
},
{
"epoch": 1.84,
"mmlu_eval_accuracy": 0.46974001380312136,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.3125,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.9230769230769231,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3058823529411765,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.069855675548704,
"step": 800
},
{
"epoch": 1.86,
"learning_rate": 0.0002,
"loss": 0.6798,
"step": 810
},
{
"epoch": 1.89,
"learning_rate": 0.0002,
"loss": 0.6485,
"step": 820
},
{
"epoch": 1.91,
"learning_rate": 0.0002,
"loss": 0.6419,
"step": 830
},
{
"epoch": 1.93,
"learning_rate": 0.0002,
"loss": 0.6528,
"step": 840
},
{
"epoch": 1.95,
"learning_rate": 0.0002,
"loss": 0.6674,
"step": 850
},
{
"epoch": 1.98,
"learning_rate": 0.0002,
"loss": 0.6487,
"step": 860
},
{
"epoch": 2.0,
"learning_rate": 0.0002,
"loss": 0.6742,
"step": 870
},
{
"epoch": 2.02,
"learning_rate": 0.0002,
"loss": 0.5303,
"step": 880
},
{
"epoch": 2.05,
"learning_rate": 0.0002,
"loss": 0.5264,
"step": 890
},
{
"epoch": 2.07,
"learning_rate": 0.0002,
"loss": 0.5578,
"step": 900
},
{
"epoch": 2.09,
"learning_rate": 0.0002,
"loss": 0.5399,
"step": 910
},
{
"epoch": 2.11,
"learning_rate": 0.0002,
"loss": 0.6028,
"step": 920
},
{
"epoch": 2.14,
"learning_rate": 0.0002,
"loss": 0.5292,
"step": 930
},
{
"epoch": 2.16,
"learning_rate": 0.0002,
"loss": 0.5715,
"step": 940
},
{
"epoch": 2.18,
"learning_rate": 0.0002,
"loss": 0.514,
"step": 950
},
{
"epoch": 2.21,
"learning_rate": 0.0002,
"loss": 0.5381,
"step": 960
},
{
"epoch": 2.23,
"learning_rate": 0.0002,
"loss": 0.5259,
"step": 970
},
{
"epoch": 2.25,
"learning_rate": 0.0002,
"loss": 0.5476,
"step": 980
},
{
"epoch": 2.28,
"learning_rate": 0.0002,
"loss": 0.5369,
"step": 990
},
{
"epoch": 2.3,
"learning_rate": 0.0002,
"loss": 0.5541,
"step": 1000
},
{
"epoch": 2.3,
"eval_loss": 0.7225061058998108,
"eval_runtime": 248.2663,
"eval_samples_per_second": 4.028,
"eval_steps_per_second": 2.014,
"step": 1000
},
{
"epoch": 2.3,
"mmlu_eval_accuracy": 0.46504233740978407,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.3076923076923077,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.9230769230769231,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.35294117647058826,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7894736842105263,
"mmlu_loss": 1.1883746445879302,
"step": 1000
}
],
"max_steps": 5000,
"num_train_epochs": 12,
"total_flos": 2.36819848468267e+17,
"trial_name": null,
"trial_params": null
}