Nous-Hermes-llama-2-7b_7b_cluster04_partitioned_v3_standardized_04
/
checkpoint-1200
/trainer_state.json
{ | |
"best_metric": 0.8871135711669922, | |
"best_model_checkpoint": "./output_v2/7b_cluster04_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_04/checkpoint-1000", | |
"epoch": 1.0857272110382266, | |
"global_step": 1200, | |
"is_hyper_param_search": false, | |
"is_local_process_zero": true, | |
"is_world_process_zero": true, | |
"log_history": [ | |
{ | |
"epoch": 0.01, | |
"learning_rate": 0.0002, | |
"loss": 0.9647, | |
"step": 10 | |
}, | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.9474, | |
"step": 20 | |
}, | |
{ | |
"epoch": 0.03, | |
"learning_rate": 0.0002, | |
"loss": 0.9287, | |
"step": 30 | |
}, | |
{ | |
"epoch": 0.04, | |
"learning_rate": 0.0002, | |
"loss": 0.8723, | |
"step": 40 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.8812, | |
"step": 50 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.8627, | |
"step": 60 | |
}, | |
{ | |
"epoch": 0.06, | |
"learning_rate": 0.0002, | |
"loss": 0.8893, | |
"step": 70 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 0.8793, | |
"step": 80 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.8778, | |
"step": 90 | |
}, | |
{ | |
"epoch": 0.09, | |
"learning_rate": 0.0002, | |
"loss": 0.8809, | |
"step": 100 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 0.8534, | |
"step": 110 | |
}, | |
{ | |
"epoch": 0.11, | |
"learning_rate": 0.0002, | |
"loss": 0.8566, | |
"step": 120 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.8979, | |
"step": 130 | |
}, | |
{ | |
"epoch": 0.13, | |
"learning_rate": 0.0002, | |
"loss": 0.8919, | |
"step": 140 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.8435, | |
"step": 150 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.8764, | |
"step": 160 | |
}, | |
{ | |
"epoch": 0.15, | |
"learning_rate": 0.0002, | |
"loss": 0.8806, | |
"step": 170 | |
}, | |
{ | |
"epoch": 0.16, | |
"learning_rate": 0.0002, | |
"loss": 0.8178, | |
"step": 180 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 0.8821, | |
"step": 190 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 0.8603, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.18, | |
"eval_loss": 0.91291344165802, | |
"eval_runtime": 191.1983, | |
"eval_samples_per_second": 5.23, | |
"eval_steps_per_second": 2.615, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.18, | |
"mmlu_eval_accuracy": 0.4726714210605103, | |
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.5, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.8181818181818182, | |
"mmlu_eval_accuracy_marketing": 0.8, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3588235294117647, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5925925925925926, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 1.0958761447948202, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.19, | |
"learning_rate": 0.0002, | |
"loss": 0.8708, | |
"step": 210 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 0.8801, | |
"step": 220 | |
}, | |
{ | |
"epoch": 0.21, | |
"learning_rate": 0.0002, | |
"loss": 0.8636, | |
"step": 230 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 0.8371, | |
"step": 240 | |
}, | |
{ | |
"epoch": 0.23, | |
"learning_rate": 0.0002, | |
"loss": 0.8593, | |
"step": 250 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 0.8254, | |
"step": 260 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 0.8625, | |
"step": 270 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 0.8968, | |
"step": 280 | |
}, | |
{ | |
"epoch": 0.26, | |
"learning_rate": 0.0002, | |
"loss": 0.8849, | |
"step": 290 | |
}, | |
{ | |
"epoch": 0.27, | |
"learning_rate": 0.0002, | |
"loss": 0.8063, | |
"step": 300 | |
}, | |
{ | |
"epoch": 0.28, | |
"learning_rate": 0.0002, | |
"loss": 0.8439, | |
"step": 310 | |
}, | |
{ | |
"epoch": 0.29, | |
"learning_rate": 0.0002, | |
"loss": 0.8491, | |
"step": 320 | |
}, | |
{ | |
"epoch": 0.3, | |
"learning_rate": 0.0002, | |
"loss": 0.8443, | |
"step": 330 | |
}, | |
{ | |
"epoch": 0.31, | |
"learning_rate": 0.0002, | |
"loss": 0.8588, | |
"step": 340 | |
}, | |
{ | |
"epoch": 0.32, | |
"learning_rate": 0.0002, | |
"loss": 0.8509, | |
"step": 350 | |
}, | |
{ | |
"epoch": 0.33, | |
"learning_rate": 0.0002, | |
"loss": 0.8041, | |
"step": 360 | |
}, | |
{ | |
"epoch": 0.33, | |
"learning_rate": 0.0002, | |
"loss": 0.8418, | |
"step": 370 | |
}, | |
{ | |
"epoch": 0.34, | |
"learning_rate": 0.0002, | |
"loss": 0.8496, | |
"step": 380 | |
}, | |
{ | |
"epoch": 0.35, | |
"learning_rate": 0.0002, | |
"loss": 0.8175, | |
"step": 390 | |
}, | |
{ | |
"epoch": 0.36, | |
"learning_rate": 0.0002, | |
"loss": 0.8622, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.36, | |
"eval_loss": 0.9020043015480042, | |
"eval_runtime": 191.4718, | |
"eval_samples_per_second": 5.223, | |
"eval_steps_per_second": 2.611, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.36, | |
"mmlu_eval_accuracy": 0.4652294198230619, | |
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.76, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.42857142857142855, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 1.1965837302975182, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.37, | |
"learning_rate": 0.0002, | |
"loss": 0.8675, | |
"step": 410 | |
}, | |
{ | |
"epoch": 0.38, | |
"learning_rate": 0.0002, | |
"loss": 0.853, | |
"step": 420 | |
}, | |
{ | |
"epoch": 0.39, | |
"learning_rate": 0.0002, | |
"loss": 0.8376, | |
"step": 430 | |
}, | |
{ | |
"epoch": 0.4, | |
"learning_rate": 0.0002, | |
"loss": 0.8217, | |
"step": 440 | |
}, | |
{ | |
"epoch": 0.41, | |
"learning_rate": 0.0002, | |
"loss": 0.8219, | |
"step": 450 | |
}, | |
{ | |
"epoch": 0.42, | |
"learning_rate": 0.0002, | |
"loss": 0.8451, | |
"step": 460 | |
}, | |
{ | |
"epoch": 0.43, | |
"learning_rate": 0.0002, | |
"loss": 0.8744, | |
"step": 470 | |
}, | |
{ | |
"epoch": 0.43, | |
"learning_rate": 0.0002, | |
"loss": 0.8496, | |
"step": 480 | |
}, | |
{ | |
"epoch": 0.44, | |
"learning_rate": 0.0002, | |
"loss": 0.8314, | |
"step": 490 | |
}, | |
{ | |
"epoch": 0.45, | |
"learning_rate": 0.0002, | |
"loss": 0.8265, | |
"step": 500 | |
}, | |
{ | |
"epoch": 0.46, | |
"learning_rate": 0.0002, | |
"loss": 0.8256, | |
"step": 510 | |
}, | |
{ | |
"epoch": 0.47, | |
"learning_rate": 0.0002, | |
"loss": 0.8259, | |
"step": 520 | |
}, | |
{ | |
"epoch": 0.48, | |
"learning_rate": 0.0002, | |
"loss": 0.8525, | |
"step": 530 | |
}, | |
{ | |
"epoch": 0.49, | |
"learning_rate": 0.0002, | |
"loss": 0.8211, | |
"step": 540 | |
}, | |
{ | |
"epoch": 0.5, | |
"learning_rate": 0.0002, | |
"loss": 0.833, | |
"step": 550 | |
}, | |
{ | |
"epoch": 0.51, | |
"learning_rate": 0.0002, | |
"loss": 0.8733, | |
"step": 560 | |
}, | |
{ | |
"epoch": 0.52, | |
"learning_rate": 0.0002, | |
"loss": 0.8583, | |
"step": 570 | |
}, | |
{ | |
"epoch": 0.52, | |
"learning_rate": 0.0002, | |
"loss": 0.8137, | |
"step": 580 | |
}, | |
{ | |
"epoch": 0.53, | |
"learning_rate": 0.0002, | |
"loss": 0.8369, | |
"step": 590 | |
}, | |
{ | |
"epoch": 0.54, | |
"learning_rate": 0.0002, | |
"loss": 0.8416, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.54, | |
"eval_loss": 0.8950903415679932, | |
"eval_runtime": 190.9856, | |
"eval_samples_per_second": 5.236, | |
"eval_steps_per_second": 2.618, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.54, | |
"mmlu_eval_accuracy": 0.46404769451684064, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.24390243902439024, | |
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.8, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6976744186046512, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, | |
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, | |
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5925925925925926, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.0818409637667181, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.55, | |
"learning_rate": 0.0002, | |
"loss": 0.8233, | |
"step": 610 | |
}, | |
{ | |
"epoch": 0.56, | |
"learning_rate": 0.0002, | |
"loss": 0.8159, | |
"step": 620 | |
}, | |
{ | |
"epoch": 0.57, | |
"learning_rate": 0.0002, | |
"loss": 0.8161, | |
"step": 630 | |
}, | |
{ | |
"epoch": 0.58, | |
"learning_rate": 0.0002, | |
"loss": 0.8297, | |
"step": 640 | |
}, | |
{ | |
"epoch": 0.59, | |
"learning_rate": 0.0002, | |
"loss": 0.8127, | |
"step": 650 | |
}, | |
{ | |
"epoch": 0.6, | |
"learning_rate": 0.0002, | |
"loss": 0.8427, | |
"step": 660 | |
}, | |
{ | |
"epoch": 0.61, | |
"learning_rate": 0.0002, | |
"loss": 0.8061, | |
"step": 670 | |
}, | |
{ | |
"epoch": 0.62, | |
"learning_rate": 0.0002, | |
"loss": 0.8576, | |
"step": 680 | |
}, | |
{ | |
"epoch": 0.62, | |
"learning_rate": 0.0002, | |
"loss": 0.8387, | |
"step": 690 | |
}, | |
{ | |
"epoch": 0.63, | |
"learning_rate": 0.0002, | |
"loss": 0.887, | |
"step": 700 | |
}, | |
{ | |
"epoch": 0.64, | |
"learning_rate": 0.0002, | |
"loss": 0.8603, | |
"step": 710 | |
}, | |
{ | |
"epoch": 0.65, | |
"learning_rate": 0.0002, | |
"loss": 0.831, | |
"step": 720 | |
}, | |
{ | |
"epoch": 0.66, | |
"learning_rate": 0.0002, | |
"loss": 0.8268, | |
"step": 730 | |
}, | |
{ | |
"epoch": 0.67, | |
"learning_rate": 0.0002, | |
"loss": 0.8922, | |
"step": 740 | |
}, | |
{ | |
"epoch": 0.68, | |
"learning_rate": 0.0002, | |
"loss": 0.8329, | |
"step": 750 | |
}, | |
{ | |
"epoch": 0.69, | |
"learning_rate": 0.0002, | |
"loss": 0.8571, | |
"step": 760 | |
}, | |
{ | |
"epoch": 0.7, | |
"learning_rate": 0.0002, | |
"loss": 0.8538, | |
"step": 770 | |
}, | |
{ | |
"epoch": 0.71, | |
"learning_rate": 0.0002, | |
"loss": 0.8543, | |
"step": 780 | |
}, | |
{ | |
"epoch": 0.71, | |
"learning_rate": 0.0002, | |
"loss": 0.8591, | |
"step": 790 | |
}, | |
{ | |
"epoch": 0.72, | |
"learning_rate": 0.0002, | |
"loss": 0.8743, | |
"step": 800 | |
}, | |
{ | |
"epoch": 0.72, | |
"eval_loss": 0.8907580375671387, | |
"eval_runtime": 191.1671, | |
"eval_samples_per_second": 5.231, | |
"eval_steps_per_second": 2.616, | |
"step": 800 | |
}, | |
{ | |
"epoch": 0.72, | |
"mmlu_eval_accuracy": 0.4759603492610683, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.5, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.8181818181818182, | |
"mmlu_eval_accuracy_marketing": 0.8, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907, | |
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.5428571428571428, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.34705882352941175, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5925925925925926, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 0.9363480592657163, | |
"step": 800 | |
}, | |
{ | |
"epoch": 0.73, | |
"learning_rate": 0.0002, | |
"loss": 0.8608, | |
"step": 810 | |
}, | |
{ | |
"epoch": 0.74, | |
"learning_rate": 0.0002, | |
"loss": 0.8207, | |
"step": 820 | |
}, | |
{ | |
"epoch": 0.75, | |
"learning_rate": 0.0002, | |
"loss": 0.8284, | |
"step": 830 | |
}, | |
{ | |
"epoch": 0.76, | |
"learning_rate": 0.0002, | |
"loss": 0.8135, | |
"step": 840 | |
}, | |
{ | |
"epoch": 0.77, | |
"learning_rate": 0.0002, | |
"loss": 0.8523, | |
"step": 850 | |
}, | |
{ | |
"epoch": 0.78, | |
"learning_rate": 0.0002, | |
"loss": 0.8349, | |
"step": 860 | |
}, | |
{ | |
"epoch": 0.79, | |
"learning_rate": 0.0002, | |
"loss": 0.855, | |
"step": 870 | |
}, | |
{ | |
"epoch": 0.8, | |
"learning_rate": 0.0002, | |
"loss": 0.8376, | |
"step": 880 | |
}, | |
{ | |
"epoch": 0.81, | |
"learning_rate": 0.0002, | |
"loss": 0.8906, | |
"step": 890 | |
}, | |
{ | |
"epoch": 0.81, | |
"learning_rate": 0.0002, | |
"loss": 0.8522, | |
"step": 900 | |
}, | |
{ | |
"epoch": 0.82, | |
"learning_rate": 0.0002, | |
"loss": 0.8491, | |
"step": 910 | |
}, | |
{ | |
"epoch": 0.83, | |
"learning_rate": 0.0002, | |
"loss": 0.8421, | |
"step": 920 | |
}, | |
{ | |
"epoch": 0.84, | |
"learning_rate": 0.0002, | |
"loss": 0.8285, | |
"step": 930 | |
}, | |
{ | |
"epoch": 0.85, | |
"learning_rate": 0.0002, | |
"loss": 0.8655, | |
"step": 940 | |
}, | |
{ | |
"epoch": 0.86, | |
"learning_rate": 0.0002, | |
"loss": 0.8348, | |
"step": 950 | |
}, | |
{ | |
"epoch": 0.87, | |
"learning_rate": 0.0002, | |
"loss": 0.8695, | |
"step": 960 | |
}, | |
{ | |
"epoch": 0.88, | |
"learning_rate": 0.0002, | |
"loss": 0.8738, | |
"step": 970 | |
}, | |
{ | |
"epoch": 0.89, | |
"learning_rate": 0.0002, | |
"loss": 0.8576, | |
"step": 980 | |
}, | |
{ | |
"epoch": 0.9, | |
"learning_rate": 0.0002, | |
"loss": 0.7884, | |
"step": 990 | |
}, | |
{ | |
"epoch": 0.9, | |
"learning_rate": 0.0002, | |
"loss": 0.8172, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 0.9, | |
"eval_loss": 0.8871135711669922, | |
"eval_runtime": 191.669, | |
"eval_samples_per_second": 5.217, | |
"eval_steps_per_second": 2.609, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 0.9, | |
"mmlu_eval_accuracy": 0.47325503865005797, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.7272727272727273, | |
"mmlu_eval_accuracy_marketing": 0.8, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.5428571428571428, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.32941176470588235, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6818181818181818, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 0.9558495128084723, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 0.91, | |
"learning_rate": 0.0002, | |
"loss": 0.8471, | |
"step": 1010 | |
}, | |
{ | |
"epoch": 0.92, | |
"learning_rate": 0.0002, | |
"loss": 0.8509, | |
"step": 1020 | |
}, | |
{ | |
"epoch": 0.93, | |
"learning_rate": 0.0002, | |
"loss": 0.8344, | |
"step": 1030 | |
}, | |
{ | |
"epoch": 0.94, | |
"learning_rate": 0.0002, | |
"loss": 0.8377, | |
"step": 1040 | |
}, | |
{ | |
"epoch": 0.95, | |
"learning_rate": 0.0002, | |
"loss": 0.8533, | |
"step": 1050 | |
}, | |
{ | |
"epoch": 0.96, | |
"learning_rate": 0.0002, | |
"loss": 0.8383, | |
"step": 1060 | |
}, | |
{ | |
"epoch": 0.97, | |
"learning_rate": 0.0002, | |
"loss": 0.8115, | |
"step": 1070 | |
}, | |
{ | |
"epoch": 0.98, | |
"learning_rate": 0.0002, | |
"loss": 0.8691, | |
"step": 1080 | |
}, | |
{ | |
"epoch": 0.99, | |
"learning_rate": 0.0002, | |
"loss": 0.8658, | |
"step": 1090 | |
}, | |
{ | |
"epoch": 1.0, | |
"learning_rate": 0.0002, | |
"loss": 0.8226, | |
"step": 1100 | |
}, | |
{ | |
"epoch": 1.0, | |
"learning_rate": 0.0002, | |
"loss": 0.8028, | |
"step": 1110 | |
}, | |
{ | |
"epoch": 1.01, | |
"learning_rate": 0.0002, | |
"loss": 0.7684, | |
"step": 1120 | |
}, | |
{ | |
"epoch": 1.02, | |
"learning_rate": 0.0002, | |
"loss": 0.8027, | |
"step": 1130 | |
}, | |
{ | |
"epoch": 1.03, | |
"learning_rate": 0.0002, | |
"loss": 0.7238, | |
"step": 1140 | |
}, | |
{ | |
"epoch": 1.04, | |
"learning_rate": 0.0002, | |
"loss": 0.8109, | |
"step": 1150 | |
}, | |
{ | |
"epoch": 1.05, | |
"learning_rate": 0.0002, | |
"loss": 0.7647, | |
"step": 1160 | |
}, | |
{ | |
"epoch": 1.06, | |
"learning_rate": 0.0002, | |
"loss": 0.8232, | |
"step": 1170 | |
}, | |
{ | |
"epoch": 1.07, | |
"learning_rate": 0.0002, | |
"loss": 0.8071, | |
"step": 1180 | |
}, | |
{ | |
"epoch": 1.08, | |
"learning_rate": 0.0002, | |
"loss": 0.7689, | |
"step": 1190 | |
}, | |
{ | |
"epoch": 1.09, | |
"learning_rate": 0.0002, | |
"loss": 0.7889, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 1.09, | |
"eval_loss": 0.8899393677711487, | |
"eval_runtime": 191.3752, | |
"eval_samples_per_second": 5.225, | |
"eval_steps_per_second": 2.613, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 1.09, | |
"mmlu_eval_accuracy": 0.479059525275743, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.6428571428571429, | |
"mmlu_eval_accuracy_astronomy": 0.5, | |
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, | |
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.8181818181818182, | |
"mmlu_eval_accuracy_marketing": 0.8, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.5428571428571428, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.3176470588235294, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.5909090909090909, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.5, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.0280111437425135, | |
"step": 1200 | |
} | |
], | |
"max_steps": 5000, | |
"num_train_epochs": 5, | |
"total_flos": 2.7100018515949978e+17, | |
"trial_name": null, | |
"trial_params": null | |
} | |