prateeky2806's picture
Training in progress, step 1000
d1b3b23
{
"best_metric": 0.8871135711669922,
"best_model_checkpoint": "./output_v2/7b_cluster04_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_04/checkpoint-1000",
"epoch": 0.9047726758651888,
"global_step": 1000,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.9647,
"step": 10
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.9474,
"step": 20
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.9287,
"step": 30
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.8723,
"step": 40
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.8812,
"step": 50
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.8627,
"step": 60
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.8893,
"step": 70
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.8793,
"step": 80
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.8778,
"step": 90
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.8809,
"step": 100
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.8534,
"step": 110
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.8566,
"step": 120
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.8979,
"step": 130
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.8919,
"step": 140
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8435,
"step": 150
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.8764,
"step": 160
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.8806,
"step": 170
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.8178,
"step": 180
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.8821,
"step": 190
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.8603,
"step": 200
},
{
"epoch": 0.18,
"eval_loss": 0.91291344165802,
"eval_runtime": 191.1983,
"eval_samples_per_second": 5.23,
"eval_steps_per_second": 2.615,
"step": 200
},
{
"epoch": 0.18,
"mmlu_eval_accuracy": 0.4726714210605103,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.0958761447948202,
"step": 200
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.8708,
"step": 210
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.8801,
"step": 220
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.8636,
"step": 230
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.8371,
"step": 240
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.8593,
"step": 250
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.8254,
"step": 260
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.8625,
"step": 270
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.8968,
"step": 280
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.8849,
"step": 290
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.8063,
"step": 300
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.8439,
"step": 310
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.8491,
"step": 320
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.8443,
"step": 330
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.8588,
"step": 340
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.8509,
"step": 350
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.8041,
"step": 360
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.8418,
"step": 370
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.8496,
"step": 380
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.8175,
"step": 390
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.8622,
"step": 400
},
{
"epoch": 0.36,
"eval_loss": 0.9020043015480042,
"eval_runtime": 191.4718,
"eval_samples_per_second": 5.223,
"eval_steps_per_second": 2.611,
"step": 400
},
{
"epoch": 0.36,
"mmlu_eval_accuracy": 0.4652294198230619,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 1.1965837302975182,
"step": 400
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.8675,
"step": 410
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.853,
"step": 420
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.8376,
"step": 430
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.8217,
"step": 440
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.8219,
"step": 450
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.8451,
"step": 460
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.8744,
"step": 470
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.8496,
"step": 480
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.8314,
"step": 490
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.8265,
"step": 500
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.8256,
"step": 510
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.8259,
"step": 520
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.8525,
"step": 530
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.8211,
"step": 540
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.833,
"step": 550
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.8733,
"step": 560
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.8583,
"step": 570
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.8137,
"step": 580
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.8369,
"step": 590
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.8416,
"step": 600
},
{
"epoch": 0.54,
"eval_loss": 0.8950903415679932,
"eval_runtime": 190.9856,
"eval_samples_per_second": 5.236,
"eval_steps_per_second": 2.618,
"step": 600
},
{
"epoch": 0.54,
"mmlu_eval_accuracy": 0.46404769451684064,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.24390243902439024,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6976744186046512,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0818409637667181,
"step": 600
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.8233,
"step": 610
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.8159,
"step": 620
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.8161,
"step": 630
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.8297,
"step": 640
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.8127,
"step": 650
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.8427,
"step": 660
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.8061,
"step": 670
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.8576,
"step": 680
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.8387,
"step": 690
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.887,
"step": 700
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.8603,
"step": 710
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.831,
"step": 720
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.8268,
"step": 730
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.8922,
"step": 740
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.8329,
"step": 750
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.8571,
"step": 760
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.8538,
"step": 770
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.8543,
"step": 780
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.8591,
"step": 790
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.8743,
"step": 800
},
{
"epoch": 0.72,
"eval_loss": 0.8907580375671387,
"eval_runtime": 191.1671,
"eval_samples_per_second": 5.231,
"eval_steps_per_second": 2.616,
"step": 800
},
{
"epoch": 0.72,
"mmlu_eval_accuracy": 0.4759603492610683,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9363480592657163,
"step": 800
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.8608,
"step": 810
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.8207,
"step": 820
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.8284,
"step": 830
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.8135,
"step": 840
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.8523,
"step": 850
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.8349,
"step": 860
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.855,
"step": 870
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.8376,
"step": 880
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.8906,
"step": 890
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.8522,
"step": 900
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.8491,
"step": 910
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.8421,
"step": 920
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.8285,
"step": 930
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.8655,
"step": 940
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.8348,
"step": 950
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.8695,
"step": 960
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.8738,
"step": 970
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.8576,
"step": 980
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.7884,
"step": 990
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.8172,
"step": 1000
},
{
"epoch": 0.9,
"eval_loss": 0.8871135711669922,
"eval_runtime": 191.669,
"eval_samples_per_second": 5.217,
"eval_steps_per_second": 2.609,
"step": 1000
},
{
"epoch": 0.9,
"mmlu_eval_accuracy": 0.47325503865005797,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.36231884057971014,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9558495128084723,
"step": 1000
}
],
"max_steps": 5000,
"num_train_epochs": 5,
"total_flos": 2.263247661199196e+17,
"trial_name": null,
"trial_params": null
}