prateeky2806's picture
Training in progress, step 400
a11a971
{
"best_metric": 0.5623835921287537,
"best_model_checkpoint": "./output_v2/7b_cluster030_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_030/checkpoint-400",
"epoch": 0.15663240332843856,
"global_step": 400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.9902,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7549,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.8421,
"step": 30
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6897,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.8507,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6511,
"step": 60
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.6798,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7609,
"step": 80
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7702,
"step": 90
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.6088,
"step": 100
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.694,
"step": 110
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.6922,
"step": 120
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.6326,
"step": 130
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.4704,
"step": 140
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6479,
"step": 150
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6442,
"step": 160
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.5064,
"step": 170
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.5357,
"step": 180
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.671,
"step": 190
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.7203,
"step": 200
},
{
"epoch": 0.08,
"eval_loss": 0.5725088715553284,
"eval_runtime": 110.5239,
"eval_samples_per_second": 9.048,
"eval_steps_per_second": 4.524,
"step": 200
},
{
"epoch": 0.08,
"mmlu_eval_accuracy": 0.4726934353480768,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.64,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6046511627906976,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.31,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9052433924598732,
"step": 200
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6101,
"step": 210
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.481,
"step": 220
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.5222,
"step": 230
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.5102,
"step": 240
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.6642,
"step": 250
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.5723,
"step": 260
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.4273,
"step": 270
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.6994,
"step": 280
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.7166,
"step": 290
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6693,
"step": 300
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.5636,
"step": 310
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.6241,
"step": 320
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.5453,
"step": 330
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.6589,
"step": 340
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6073,
"step": 350
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.5931,
"step": 360
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.5405,
"step": 370
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.6522,
"step": 380
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.672,
"step": 390
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.5791,
"step": 400
},
{
"epoch": 0.16,
"eval_loss": 0.5623835921287537,
"eval_runtime": 111.0199,
"eval_samples_per_second": 9.007,
"eval_steps_per_second": 4.504,
"step": 400
},
{
"epoch": 0.16,
"mmlu_eval_accuracy": 0.4759225748253283,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.5,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6666666666666666,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.37142857142857144,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.7727272727272727,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.7658495643363376,
"step": 400
}
],
"max_steps": 5000,
"num_train_epochs": 2,
"total_flos": 3.15027803529216e+16,
"trial_name": null,
"trial_params": null
}