prateeky2806's picture
Training in progress, step 1200
958c4e0
{
"best_metric": 0.4632822871208191,
"best_model_checkpoint": "./output_v2/7b_cluster019_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_019/checkpoint-600",
"epoch": 2.038216560509554,
"global_step": 1200,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6267,
"step": 10
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7811,
"step": 20
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5062,
"step": 30
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6137,
"step": 40
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.4957,
"step": 50
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.4838,
"step": 60
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6938,
"step": 70
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.4848,
"step": 80
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.4587,
"step": 90
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.5768,
"step": 100
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.4725,
"step": 110
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.5152,
"step": 120
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.5707,
"step": 130
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.5002,
"step": 140
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.4043,
"step": 150
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.6542,
"step": 160
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.4533,
"step": 170
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.5814,
"step": 180
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.525,
"step": 190
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.5448,
"step": 200
},
{
"epoch": 0.34,
"eval_loss": 0.48780253529548645,
"eval_runtime": 101.8557,
"eval_samples_per_second": 9.818,
"eval_steps_per_second": 4.909,
"step": 200
},
{
"epoch": 0.34,
"mmlu_eval_accuracy": 0.4580124869645426,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.36363636363636365,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9094281114112615,
"step": 200
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.4536,
"step": 210
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.5147,
"step": 220
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.423,
"step": 230
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.5832,
"step": 240
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.4719,
"step": 250
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.452,
"step": 260
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.4907,
"step": 270
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.5322,
"step": 280
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.592,
"step": 290
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.5964,
"step": 300
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.5404,
"step": 310
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.5788,
"step": 320
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.4701,
"step": 330
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.4899,
"step": 340
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.5177,
"step": 350
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.479,
"step": 360
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.4815,
"step": 370
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.4935,
"step": 380
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.5712,
"step": 390
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.4873,
"step": 400
},
{
"epoch": 0.68,
"eval_loss": 0.4672442674636841,
"eval_runtime": 102.1346,
"eval_samples_per_second": 9.791,
"eval_steps_per_second": 4.896,
"step": 400
},
{
"epoch": 0.68,
"mmlu_eval_accuracy": 0.4486531670462866,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5714285714285714,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9122924784456159,
"step": 400
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.5392,
"step": 410
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.4237,
"step": 420
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.4864,
"step": 430
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.4317,
"step": 440
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.4613,
"step": 450
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.4595,
"step": 460
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.623,
"step": 470
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.5262,
"step": 480
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.4351,
"step": 490
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.5168,
"step": 500
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.4274,
"step": 510
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.5015,
"step": 520
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.4768,
"step": 530
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.4208,
"step": 540
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.4848,
"step": 550
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.4043,
"step": 560
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.4383,
"step": 570
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.5794,
"step": 580
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.439,
"step": 590
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.3456,
"step": 600
},
{
"epoch": 1.02,
"eval_loss": 0.4632822871208191,
"eval_runtime": 101.8929,
"eval_samples_per_second": 9.814,
"eval_steps_per_second": 4.907,
"step": 600
},
{
"epoch": 1.02,
"mmlu_eval_accuracy": 0.4617338416384464,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.26,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.4074074074074074,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8381480119110866,
"step": 600
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.3464,
"step": 610
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.4158,
"step": 620
},
{
"epoch": 1.07,
"learning_rate": 0.0002,
"loss": 0.3465,
"step": 630
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.3078,
"step": 640
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.4329,
"step": 650
},
{
"epoch": 1.12,
"learning_rate": 0.0002,
"loss": 0.3874,
"step": 660
},
{
"epoch": 1.14,
"learning_rate": 0.0002,
"loss": 0.4908,
"step": 670
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.5097,
"step": 680
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.3967,
"step": 690
},
{
"epoch": 1.19,
"learning_rate": 0.0002,
"loss": 0.4721,
"step": 700
},
{
"epoch": 1.21,
"learning_rate": 0.0002,
"loss": 0.3612,
"step": 710
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.4453,
"step": 720
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.4538,
"step": 730
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.3903,
"step": 740
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.3541,
"step": 750
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.3564,
"step": 760
},
{
"epoch": 1.31,
"learning_rate": 0.0002,
"loss": 0.386,
"step": 770
},
{
"epoch": 1.32,
"learning_rate": 0.0002,
"loss": 0.4495,
"step": 780
},
{
"epoch": 1.34,
"learning_rate": 0.0002,
"loss": 0.3281,
"step": 790
},
{
"epoch": 1.36,
"learning_rate": 0.0002,
"loss": 0.3315,
"step": 800
},
{
"epoch": 1.36,
"eval_loss": 0.47132888436317444,
"eval_runtime": 102.2178,
"eval_samples_per_second": 9.783,
"eval_steps_per_second": 4.892,
"step": 800
},
{
"epoch": 1.36,
"mmlu_eval_accuracy": 0.4676211978570877,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.4375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.29,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.37037037037037035,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8817933564495013,
"step": 800
},
{
"epoch": 1.38,
"learning_rate": 0.0002,
"loss": 0.4534,
"step": 810
},
{
"epoch": 1.39,
"learning_rate": 0.0002,
"loss": 0.3944,
"step": 820
},
{
"epoch": 1.41,
"learning_rate": 0.0002,
"loss": 0.4096,
"step": 830
},
{
"epoch": 1.43,
"learning_rate": 0.0002,
"loss": 0.4039,
"step": 840
},
{
"epoch": 1.44,
"learning_rate": 0.0002,
"loss": 0.438,
"step": 850
},
{
"epoch": 1.46,
"learning_rate": 0.0002,
"loss": 0.3773,
"step": 860
},
{
"epoch": 1.48,
"learning_rate": 0.0002,
"loss": 0.4969,
"step": 870
},
{
"epoch": 1.49,
"learning_rate": 0.0002,
"loss": 0.396,
"step": 880
},
{
"epoch": 1.51,
"learning_rate": 0.0002,
"loss": 0.4196,
"step": 890
},
{
"epoch": 1.53,
"learning_rate": 0.0002,
"loss": 0.5202,
"step": 900
},
{
"epoch": 1.55,
"learning_rate": 0.0002,
"loss": 0.4728,
"step": 910
},
{
"epoch": 1.56,
"learning_rate": 0.0002,
"loss": 0.4229,
"step": 920
},
{
"epoch": 1.58,
"learning_rate": 0.0002,
"loss": 0.4879,
"step": 930
},
{
"epoch": 1.6,
"learning_rate": 0.0002,
"loss": 0.4288,
"step": 940
},
{
"epoch": 1.61,
"learning_rate": 0.0002,
"loss": 0.4085,
"step": 950
},
{
"epoch": 1.63,
"learning_rate": 0.0002,
"loss": 0.3793,
"step": 960
},
{
"epoch": 1.65,
"learning_rate": 0.0002,
"loss": 0.503,
"step": 970
},
{
"epoch": 1.66,
"learning_rate": 0.0002,
"loss": 0.3353,
"step": 980
},
{
"epoch": 1.68,
"learning_rate": 0.0002,
"loss": 0.4212,
"step": 990
},
{
"epoch": 1.7,
"learning_rate": 0.0002,
"loss": 0.341,
"step": 1000
},
{
"epoch": 1.7,
"eval_loss": 0.4644744396209717,
"eval_runtime": 102.0988,
"eval_samples_per_second": 9.794,
"eval_steps_per_second": 4.897,
"step": 1000
},
{
"epoch": 1.7,
"mmlu_eval_accuracy": 0.4532186308687434,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.10344827586206896,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.48484848484848486,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9635014412705799,
"step": 1000
},
{
"epoch": 1.72,
"learning_rate": 0.0002,
"loss": 0.4641,
"step": 1010
},
{
"epoch": 1.73,
"learning_rate": 0.0002,
"loss": 0.4247,
"step": 1020
},
{
"epoch": 1.75,
"learning_rate": 0.0002,
"loss": 0.3628,
"step": 1030
},
{
"epoch": 1.77,
"learning_rate": 0.0002,
"loss": 0.3531,
"step": 1040
},
{
"epoch": 1.78,
"learning_rate": 0.0002,
"loss": 0.407,
"step": 1050
},
{
"epoch": 1.8,
"learning_rate": 0.0002,
"loss": 0.3457,
"step": 1060
},
{
"epoch": 1.82,
"learning_rate": 0.0002,
"loss": 0.3636,
"step": 1070
},
{
"epoch": 1.83,
"learning_rate": 0.0002,
"loss": 0.4112,
"step": 1080
},
{
"epoch": 1.85,
"learning_rate": 0.0002,
"loss": 0.4043,
"step": 1090
},
{
"epoch": 1.87,
"learning_rate": 0.0002,
"loss": 0.4891,
"step": 1100
},
{
"epoch": 1.89,
"learning_rate": 0.0002,
"loss": 0.4216,
"step": 1110
},
{
"epoch": 1.9,
"learning_rate": 0.0002,
"loss": 0.2883,
"step": 1120
},
{
"epoch": 1.92,
"learning_rate": 0.0002,
"loss": 0.4063,
"step": 1130
},
{
"epoch": 1.94,
"learning_rate": 0.0002,
"loss": 0.3683,
"step": 1140
},
{
"epoch": 1.95,
"learning_rate": 0.0002,
"loss": 0.3717,
"step": 1150
},
{
"epoch": 1.97,
"learning_rate": 0.0002,
"loss": 0.4374,
"step": 1160
},
{
"epoch": 1.99,
"learning_rate": 0.0002,
"loss": 0.4172,
"step": 1170
},
{
"epoch": 2.0,
"learning_rate": 0.0002,
"loss": 0.2856,
"step": 1180
},
{
"epoch": 2.02,
"learning_rate": 0.0002,
"loss": 0.265,
"step": 1190
},
{
"epoch": 2.04,
"learning_rate": 0.0002,
"loss": 0.2448,
"step": 1200
},
{
"epoch": 2.04,
"eval_loss": 0.5078285336494446,
"eval_runtime": 102.2139,
"eval_samples_per_second": 9.783,
"eval_steps_per_second": 4.892,
"step": 1200
},
{
"epoch": 2.04,
"mmlu_eval_accuracy": 0.45134380789496525,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.7272727272727273,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.25,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6162790697674418,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.3548387096774194,
"mmlu_eval_accuracy_professional_psychology": 0.463768115942029,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9378224162934421,
"step": 1200
}
],
"max_steps": 5000,
"num_train_epochs": 9,
"total_flos": 1.1171389466360218e+17,
"trial_name": null,
"trial_params": null
}