Nous-Hermes-llama-2-7b_7b_cluster019_partitioned_v3_standardized_019
/
checkpoint-1200
/trainer_state.json
{ | |
"best_metric": 0.4632822871208191, | |
"best_model_checkpoint": "./output_v2/7b_cluster019_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_019/checkpoint-600", | |
"epoch": 2.038216560509554, | |
"global_step": 1200, | |
"is_hyper_param_search": false, | |
"is_local_process_zero": true, | |
"is_world_process_zero": true, | |
"log_history": [ | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.6267, | |
"step": 10 | |
}, | |
{ | |
"epoch": 0.03, | |
"learning_rate": 0.0002, | |
"loss": 0.7811, | |
"step": 20 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.5062, | |
"step": 30 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 0.6137, | |
"step": 40 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.4957, | |
"step": 50 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 0.4838, | |
"step": 60 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.6938, | |
"step": 70 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.4848, | |
"step": 80 | |
}, | |
{ | |
"epoch": 0.15, | |
"learning_rate": 0.0002, | |
"loss": 0.4587, | |
"step": 90 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 0.5768, | |
"step": 100 | |
}, | |
{ | |
"epoch": 0.19, | |
"learning_rate": 0.0002, | |
"loss": 0.4725, | |
"step": 110 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 0.5152, | |
"step": 120 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 0.5707, | |
"step": 130 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 0.5002, | |
"step": 140 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 0.4043, | |
"step": 150 | |
}, | |
{ | |
"epoch": 0.27, | |
"learning_rate": 0.0002, | |
"loss": 0.6542, | |
"step": 160 | |
}, | |
{ | |
"epoch": 0.29, | |
"learning_rate": 0.0002, | |
"loss": 0.4533, | |
"step": 170 | |
}, | |
{ | |
"epoch": 0.31, | |
"learning_rate": 0.0002, | |
"loss": 0.5814, | |
"step": 180 | |
}, | |
{ | |
"epoch": 0.32, | |
"learning_rate": 0.0002, | |
"loss": 0.525, | |
"step": 190 | |
}, | |
{ | |
"epoch": 0.34, | |
"learning_rate": 0.0002, | |
"loss": 0.5448, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.34, | |
"eval_loss": 0.48780253529548645, | |
"eval_runtime": 101.8557, | |
"eval_samples_per_second": 9.818, | |
"eval_steps_per_second": 4.909, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.34, | |
"mmlu_eval_accuracy": 0.4580124869645426, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.6428571428571429, | |
"mmlu_eval_accuracy_astronomy": 0.5, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.5, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.5454545454545454, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.5, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.36363636363636365, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.5151515151515151, | |
"mmlu_eval_accuracy_philosophy": 0.5294117647058824, | |
"mmlu_eval_accuracy_prehistory": 0.5428571428571428, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3176470588235294, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, | |
"mmlu_eval_accuracy_public_relations": 0.6666666666666666, | |
"mmlu_eval_accuracy_security_studies": 0.4444444444444444, | |
"mmlu_eval_accuracy_sociology": 0.5, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.5, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 0.9094281114112615, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.36, | |
"learning_rate": 0.0002, | |
"loss": 0.4536, | |
"step": 210 | |
}, | |
{ | |
"epoch": 0.37, | |
"learning_rate": 0.0002, | |
"loss": 0.5147, | |
"step": 220 | |
}, | |
{ | |
"epoch": 0.39, | |
"learning_rate": 0.0002, | |
"loss": 0.423, | |
"step": 230 | |
}, | |
{ | |
"epoch": 0.41, | |
"learning_rate": 0.0002, | |
"loss": 0.5832, | |
"step": 240 | |
}, | |
{ | |
"epoch": 0.42, | |
"learning_rate": 0.0002, | |
"loss": 0.4719, | |
"step": 250 | |
}, | |
{ | |
"epoch": 0.44, | |
"learning_rate": 0.0002, | |
"loss": 0.452, | |
"step": 260 | |
}, | |
{ | |
"epoch": 0.46, | |
"learning_rate": 0.0002, | |
"loss": 0.4907, | |
"step": 270 | |
}, | |
{ | |
"epoch": 0.48, | |
"learning_rate": 0.0002, | |
"loss": 0.5322, | |
"step": 280 | |
}, | |
{ | |
"epoch": 0.49, | |
"learning_rate": 0.0002, | |
"loss": 0.592, | |
"step": 290 | |
}, | |
{ | |
"epoch": 0.51, | |
"learning_rate": 0.0002, | |
"loss": 0.5964, | |
"step": 300 | |
}, | |
{ | |
"epoch": 0.53, | |
"learning_rate": 0.0002, | |
"loss": 0.5404, | |
"step": 310 | |
}, | |
{ | |
"epoch": 0.54, | |
"learning_rate": 0.0002, | |
"loss": 0.5788, | |
"step": 320 | |
}, | |
{ | |
"epoch": 0.56, | |
"learning_rate": 0.0002, | |
"loss": 0.4701, | |
"step": 330 | |
}, | |
{ | |
"epoch": 0.58, | |
"learning_rate": 0.0002, | |
"loss": 0.4899, | |
"step": 340 | |
}, | |
{ | |
"epoch": 0.59, | |
"learning_rate": 0.0002, | |
"loss": 0.5177, | |
"step": 350 | |
}, | |
{ | |
"epoch": 0.61, | |
"learning_rate": 0.0002, | |
"loss": 0.479, | |
"step": 360 | |
}, | |
{ | |
"epoch": 0.63, | |
"learning_rate": 0.0002, | |
"loss": 0.4815, | |
"step": 370 | |
}, | |
{ | |
"epoch": 0.65, | |
"learning_rate": 0.0002, | |
"loss": 0.4935, | |
"step": 380 | |
}, | |
{ | |
"epoch": 0.66, | |
"learning_rate": 0.0002, | |
"loss": 0.5712, | |
"step": 390 | |
}, | |
{ | |
"epoch": 0.68, | |
"learning_rate": 0.0002, | |
"loss": 0.4873, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.68, | |
"eval_loss": 0.4672442674636841, | |
"eval_runtime": 102.1346, | |
"eval_samples_per_second": 9.791, | |
"eval_steps_per_second": 4.896, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.68, | |
"mmlu_eval_accuracy": 0.4486531670462866, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5, | |
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.25, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.75, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.45454545454545453, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.25, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.5714285714285714, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.32941176470588235, | |
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, | |
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.4444444444444444, | |
"mmlu_eval_accuracy_sociology": 0.5909090909090909, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 0.9122924784456159, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.7, | |
"learning_rate": 0.0002, | |
"loss": 0.5392, | |
"step": 410 | |
}, | |
{ | |
"epoch": 0.71, | |
"learning_rate": 0.0002, | |
"loss": 0.4237, | |
"step": 420 | |
}, | |
{ | |
"epoch": 0.73, | |
"learning_rate": 0.0002, | |
"loss": 0.4864, | |
"step": 430 | |
}, | |
{ | |
"epoch": 0.75, | |
"learning_rate": 0.0002, | |
"loss": 0.4317, | |
"step": 440 | |
}, | |
{ | |
"epoch": 0.76, | |
"learning_rate": 0.0002, | |
"loss": 0.4613, | |
"step": 450 | |
}, | |
{ | |
"epoch": 0.78, | |
"learning_rate": 0.0002, | |
"loss": 0.4595, | |
"step": 460 | |
}, | |
{ | |
"epoch": 0.8, | |
"learning_rate": 0.0002, | |
"loss": 0.623, | |
"step": 470 | |
}, | |
{ | |
"epoch": 0.82, | |
"learning_rate": 0.0002, | |
"loss": 0.5262, | |
"step": 480 | |
}, | |
{ | |
"epoch": 0.83, | |
"learning_rate": 0.0002, | |
"loss": 0.4351, | |
"step": 490 | |
}, | |
{ | |
"epoch": 0.85, | |
"learning_rate": 0.0002, | |
"loss": 0.5168, | |
"step": 500 | |
}, | |
{ | |
"epoch": 0.87, | |
"learning_rate": 0.0002, | |
"loss": 0.4274, | |
"step": 510 | |
}, | |
{ | |
"epoch": 0.88, | |
"learning_rate": 0.0002, | |
"loss": 0.5015, | |
"step": 520 | |
}, | |
{ | |
"epoch": 0.9, | |
"learning_rate": 0.0002, | |
"loss": 0.4768, | |
"step": 530 | |
}, | |
{ | |
"epoch": 0.92, | |
"learning_rate": 0.0002, | |
"loss": 0.4208, | |
"step": 540 | |
}, | |
{ | |
"epoch": 0.93, | |
"learning_rate": 0.0002, | |
"loss": 0.4848, | |
"step": 550 | |
}, | |
{ | |
"epoch": 0.95, | |
"learning_rate": 0.0002, | |
"loss": 0.4043, | |
"step": 560 | |
}, | |
{ | |
"epoch": 0.97, | |
"learning_rate": 0.0002, | |
"loss": 0.4383, | |
"step": 570 | |
}, | |
{ | |
"epoch": 0.99, | |
"learning_rate": 0.0002, | |
"loss": 0.5794, | |
"step": 580 | |
}, | |
{ | |
"epoch": 1.0, | |
"learning_rate": 0.0002, | |
"loss": 0.439, | |
"step": 590 | |
}, | |
{ | |
"epoch": 1.02, | |
"learning_rate": 0.0002, | |
"loss": 0.3456, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.02, | |
"eval_loss": 0.4632822871208191, | |
"eval_runtime": 101.8929, | |
"eval_samples_per_second": 9.814, | |
"eval_steps_per_second": 4.907, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.02, | |
"mmlu_eval_accuracy": 0.4617338416384464, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.6428571428571429, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.5, | |
"mmlu_eval_accuracy_college_chemistry": 0.0, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.25, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365, | |
"mmlu_eval_accuracy_management": 0.6363636363636364, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, | |
"mmlu_eval_accuracy_moral_scenarios": 0.26, | |
"mmlu_eval_accuracy_nutrition": 0.5454545454545454, | |
"mmlu_eval_accuracy_philosophy": 0.5294117647058824, | |
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.35294117647058826, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.4074074074074074, | |
"mmlu_eval_accuracy_sociology": 0.5454545454545454, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 0.8381480119110866, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.04, | |
"learning_rate": 0.0002, | |
"loss": 0.3464, | |
"step": 610 | |
}, | |
{ | |
"epoch": 1.05, | |
"learning_rate": 0.0002, | |
"loss": 0.4158, | |
"step": 620 | |
}, | |
{ | |
"epoch": 1.07, | |
"learning_rate": 0.0002, | |
"loss": 0.3465, | |
"step": 630 | |
}, | |
{ | |
"epoch": 1.09, | |
"learning_rate": 0.0002, | |
"loss": 0.3078, | |
"step": 640 | |
}, | |
{ | |
"epoch": 1.1, | |
"learning_rate": 0.0002, | |
"loss": 0.4329, | |
"step": 650 | |
}, | |
{ | |
"epoch": 1.12, | |
"learning_rate": 0.0002, | |
"loss": 0.3874, | |
"step": 660 | |
}, | |
{ | |
"epoch": 1.14, | |
"learning_rate": 0.0002, | |
"loss": 0.4908, | |
"step": 670 | |
}, | |
{ | |
"epoch": 1.15, | |
"learning_rate": 0.0002, | |
"loss": 0.5097, | |
"step": 680 | |
}, | |
{ | |
"epoch": 1.17, | |
"learning_rate": 0.0002, | |
"loss": 0.3967, | |
"step": 690 | |
}, | |
{ | |
"epoch": 1.19, | |
"learning_rate": 0.0002, | |
"loss": 0.4721, | |
"step": 700 | |
}, | |
{ | |
"epoch": 1.21, | |
"learning_rate": 0.0002, | |
"loss": 0.3612, | |
"step": 710 | |
}, | |
{ | |
"epoch": 1.22, | |
"learning_rate": 0.0002, | |
"loss": 0.4453, | |
"step": 720 | |
}, | |
{ | |
"epoch": 1.24, | |
"learning_rate": 0.0002, | |
"loss": 0.4538, | |
"step": 730 | |
}, | |
{ | |
"epoch": 1.26, | |
"learning_rate": 0.0002, | |
"loss": 0.3903, | |
"step": 740 | |
}, | |
{ | |
"epoch": 1.27, | |
"learning_rate": 0.0002, | |
"loss": 0.3541, | |
"step": 750 | |
}, | |
{ | |
"epoch": 1.29, | |
"learning_rate": 0.0002, | |
"loss": 0.3564, | |
"step": 760 | |
}, | |
{ | |
"epoch": 1.31, | |
"learning_rate": 0.0002, | |
"loss": 0.386, | |
"step": 770 | |
}, | |
{ | |
"epoch": 1.32, | |
"learning_rate": 0.0002, | |
"loss": 0.4495, | |
"step": 780 | |
}, | |
{ | |
"epoch": 1.34, | |
"learning_rate": 0.0002, | |
"loss": 0.3281, | |
"step": 790 | |
}, | |
{ | |
"epoch": 1.36, | |
"learning_rate": 0.0002, | |
"loss": 0.3315, | |
"step": 800 | |
}, | |
{ | |
"epoch": 1.36, | |
"eval_loss": 0.47132888436317444, | |
"eval_runtime": 102.2178, | |
"eval_samples_per_second": 9.783, | |
"eval_steps_per_second": 4.892, | |
"step": 800 | |
}, | |
{ | |
"epoch": 1.36, | |
"mmlu_eval_accuracy": 0.4676211978570877, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, | |
"mmlu_eval_accuracy_college_biology": 0.5, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.25, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.4375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.75, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.29, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.34705882352941175, | |
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484, | |
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406, | |
"mmlu_eval_accuracy_public_relations": 0.6666666666666666, | |
"mmlu_eval_accuracy_security_studies": 0.37037037037037035, | |
"mmlu_eval_accuracy_sociology": 0.5909090909090909, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 0.8817933564495013, | |
"step": 800 | |
}, | |
{ | |
"epoch": 1.38, | |
"learning_rate": 0.0002, | |
"loss": 0.4534, | |
"step": 810 | |
}, | |
{ | |
"epoch": 1.39, | |
"learning_rate": 0.0002, | |
"loss": 0.3944, | |
"step": 820 | |
}, | |
{ | |
"epoch": 1.41, | |
"learning_rate": 0.0002, | |
"loss": 0.4096, | |
"step": 830 | |
}, | |
{ | |
"epoch": 1.43, | |
"learning_rate": 0.0002, | |
"loss": 0.4039, | |
"step": 840 | |
}, | |
{ | |
"epoch": 1.44, | |
"learning_rate": 0.0002, | |
"loss": 0.438, | |
"step": 850 | |
}, | |
{ | |
"epoch": 1.46, | |
"learning_rate": 0.0002, | |
"loss": 0.3773, | |
"step": 860 | |
}, | |
{ | |
"epoch": 1.48, | |
"learning_rate": 0.0002, | |
"loss": 0.4969, | |
"step": 870 | |
}, | |
{ | |
"epoch": 1.49, | |
"learning_rate": 0.0002, | |
"loss": 0.396, | |
"step": 880 | |
}, | |
{ | |
"epoch": 1.51, | |
"learning_rate": 0.0002, | |
"loss": 0.4196, | |
"step": 890 | |
}, | |
{ | |
"epoch": 1.53, | |
"learning_rate": 0.0002, | |
"loss": 0.5202, | |
"step": 900 | |
}, | |
{ | |
"epoch": 1.55, | |
"learning_rate": 0.0002, | |
"loss": 0.4728, | |
"step": 910 | |
}, | |
{ | |
"epoch": 1.56, | |
"learning_rate": 0.0002, | |
"loss": 0.4229, | |
"step": 920 | |
}, | |
{ | |
"epoch": 1.58, | |
"learning_rate": 0.0002, | |
"loss": 0.4879, | |
"step": 930 | |
}, | |
{ | |
"epoch": 1.6, | |
"learning_rate": 0.0002, | |
"loss": 0.4288, | |
"step": 940 | |
}, | |
{ | |
"epoch": 1.61, | |
"learning_rate": 0.0002, | |
"loss": 0.4085, | |
"step": 950 | |
}, | |
{ | |
"epoch": 1.63, | |
"learning_rate": 0.0002, | |
"loss": 0.3793, | |
"step": 960 | |
}, | |
{ | |
"epoch": 1.65, | |
"learning_rate": 0.0002, | |
"loss": 0.503, | |
"step": 970 | |
}, | |
{ | |
"epoch": 1.66, | |
"learning_rate": 0.0002, | |
"loss": 0.3353, | |
"step": 980 | |
}, | |
{ | |
"epoch": 1.68, | |
"learning_rate": 0.0002, | |
"loss": 0.4212, | |
"step": 990 | |
}, | |
{ | |
"epoch": 1.7, | |
"learning_rate": 0.0002, | |
"loss": 0.341, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 1.7, | |
"eval_loss": 0.4644744396209717, | |
"eval_runtime": 102.0988, | |
"eval_samples_per_second": 9.794, | |
"eval_steps_per_second": 4.897, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 1.7, | |
"mmlu_eval_accuracy": 0.4532186308687434, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.5, | |
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.25, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.10344827586206896, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, | |
"mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.7391304347826086, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, | |
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365, | |
"mmlu_eval_accuracy_management": 0.45454545454545453, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, | |
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.48484848484848486, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.3352941176470588, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.48148148148148145, | |
"mmlu_eval_accuracy_sociology": 0.5454545454545454, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 0.9635014412705799, | |
"step": 1000 | |
}, | |
{ | |
"epoch": 1.72, | |
"learning_rate": 0.0002, | |
"loss": 0.4641, | |
"step": 1010 | |
}, | |
{ | |
"epoch": 1.73, | |
"learning_rate": 0.0002, | |
"loss": 0.4247, | |
"step": 1020 | |
}, | |
{ | |
"epoch": 1.75, | |
"learning_rate": 0.0002, | |
"loss": 0.3628, | |
"step": 1030 | |
}, | |
{ | |
"epoch": 1.77, | |
"learning_rate": 0.0002, | |
"loss": 0.3531, | |
"step": 1040 | |
}, | |
{ | |
"epoch": 1.78, | |
"learning_rate": 0.0002, | |
"loss": 0.407, | |
"step": 1050 | |
}, | |
{ | |
"epoch": 1.8, | |
"learning_rate": 0.0002, | |
"loss": 0.3457, | |
"step": 1060 | |
}, | |
{ | |
"epoch": 1.82, | |
"learning_rate": 0.0002, | |
"loss": 0.3636, | |
"step": 1070 | |
}, | |
{ | |
"epoch": 1.83, | |
"learning_rate": 0.0002, | |
"loss": 0.4112, | |
"step": 1080 | |
}, | |
{ | |
"epoch": 1.85, | |
"learning_rate": 0.0002, | |
"loss": 0.4043, | |
"step": 1090 | |
}, | |
{ | |
"epoch": 1.87, | |
"learning_rate": 0.0002, | |
"loss": 0.4891, | |
"step": 1100 | |
}, | |
{ | |
"epoch": 1.89, | |
"learning_rate": 0.0002, | |
"loss": 0.4216, | |
"step": 1110 | |
}, | |
{ | |
"epoch": 1.9, | |
"learning_rate": 0.0002, | |
"loss": 0.2883, | |
"step": 1120 | |
}, | |
{ | |
"epoch": 1.92, | |
"learning_rate": 0.0002, | |
"loss": 0.4063, | |
"step": 1130 | |
}, | |
{ | |
"epoch": 1.94, | |
"learning_rate": 0.0002, | |
"loss": 0.3683, | |
"step": 1140 | |
}, | |
{ | |
"epoch": 1.95, | |
"learning_rate": 0.0002, | |
"loss": 0.3717, | |
"step": 1150 | |
}, | |
{ | |
"epoch": 1.97, | |
"learning_rate": 0.0002, | |
"loss": 0.4374, | |
"step": 1160 | |
}, | |
{ | |
"epoch": 1.99, | |
"learning_rate": 0.0002, | |
"loss": 0.4172, | |
"step": 1170 | |
}, | |
{ | |
"epoch": 2.0, | |
"learning_rate": 0.0002, | |
"loss": 0.2856, | |
"step": 1180 | |
}, | |
{ | |
"epoch": 2.02, | |
"learning_rate": 0.0002, | |
"loss": 0.265, | |
"step": 1190 | |
}, | |
{ | |
"epoch": 2.04, | |
"learning_rate": 0.0002, | |
"loss": 0.2448, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 2.04, | |
"eval_loss": 0.5078285336494446, | |
"eval_runtime": 102.2139, | |
"eval_samples_per_second": 9.783, | |
"eval_steps_per_second": 4.892, | |
"step": 1200 | |
}, | |
{ | |
"epoch": 2.04, | |
"mmlu_eval_accuracy": 0.45134380789496525, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.6428571428571429, | |
"mmlu_eval_accuracy_astronomy": 0.5, | |
"mmlu_eval_accuracy_business_ethics": 0.7272727272727273, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, | |
"mmlu_eval_accuracy_college_biology": 0.375, | |
"mmlu_eval_accuracy_college_chemistry": 0.25, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.25, | |
"mmlu_eval_accuracy_electrical_engineering": 0.125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, | |
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.3076923076923077, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.25, | |
"mmlu_eval_accuracy_international_law": 0.8461538461538461, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.45454545454545453, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6162790697674418, | |
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, | |
"mmlu_eval_accuracy_moral_scenarios": 0.25, | |
"mmlu_eval_accuracy_nutrition": 0.5151515151515151, | |
"mmlu_eval_accuracy_philosophy": 0.5, | |
"mmlu_eval_accuracy_prehistory": 0.4, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.34705882352941175, | |
"mmlu_eval_accuracy_professional_medicine": 0.3548387096774194, | |
"mmlu_eval_accuracy_professional_psychology": 0.463768115942029, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.4444444444444444, | |
"mmlu_eval_accuracy_sociology": 0.5, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.6842105263157895, | |
"mmlu_loss": 0.9378224162934421, | |
"step": 1200 | |
} | |
], | |
"max_steps": 5000, | |
"num_train_epochs": 9, | |
"total_flos": 1.1171389466360218e+17, | |
"trial_name": null, | |
"trial_params": null | |
} | |