prateeky2806's picture
Training in progress, step 600
78e358b
raw
history blame
18.6 kB
{
"best_metric": 0.4632822871208191,
"best_model_checkpoint": "./output_v2/7b_cluster019_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_019/checkpoint-600",
"epoch": 1.019108280254777,
"global_step": 600,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6267,
"step": 10
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7811,
"step": 20
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5062,
"step": 30
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6137,
"step": 40
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.4957,
"step": 50
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.4838,
"step": 60
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6938,
"step": 70
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.4848,
"step": 80
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.4587,
"step": 90
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.5768,
"step": 100
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.4725,
"step": 110
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.5152,
"step": 120
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.5707,
"step": 130
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.5002,
"step": 140
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.4043,
"step": 150
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.6542,
"step": 160
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.4533,
"step": 170
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.5814,
"step": 180
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.525,
"step": 190
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.5448,
"step": 200
},
{
"epoch": 0.34,
"eval_loss": 0.48780253529548645,
"eval_runtime": 101.8557,
"eval_samples_per_second": 9.818,
"eval_steps_per_second": 4.909,
"step": 200
},
{
"epoch": 0.34,
"mmlu_eval_accuracy": 0.4580124869645426,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.36363636363636365,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5151515151515151,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9094281114112615,
"step": 200
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.4536,
"step": 210
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.5147,
"step": 220
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.423,
"step": 230
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.5832,
"step": 240
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.4719,
"step": 250
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.452,
"step": 260
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.4907,
"step": 270
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.5322,
"step": 280
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.592,
"step": 290
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.5964,
"step": 300
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.5404,
"step": 310
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.5788,
"step": 320
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.4701,
"step": 330
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.4899,
"step": 340
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.5177,
"step": 350
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.479,
"step": 360
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.4815,
"step": 370
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.4935,
"step": 380
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.5712,
"step": 390
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.4873,
"step": 400
},
{
"epoch": 0.68,
"eval_loss": 0.4672442674636841,
"eval_runtime": 102.1346,
"eval_samples_per_second": 9.791,
"eval_steps_per_second": 4.896,
"step": 400
},
{
"epoch": 0.68,
"mmlu_eval_accuracy": 0.4486531670462866,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5714285714285714,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9122924784456159,
"step": 400
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.5392,
"step": 410
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.4237,
"step": 420
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.4864,
"step": 430
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.4317,
"step": 440
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.4613,
"step": 450
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.4595,
"step": 460
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.623,
"step": 470
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.5262,
"step": 480
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.4351,
"step": 490
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.5168,
"step": 500
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.4274,
"step": 510
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.5015,
"step": 520
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.4768,
"step": 530
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.4208,
"step": 540
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.4848,
"step": 550
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.4043,
"step": 560
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.4383,
"step": 570
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.5794,
"step": 580
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.439,
"step": 590
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.3456,
"step": 600
},
{
"epoch": 1.02,
"eval_loss": 0.4632822871208191,
"eval_runtime": 101.8929,
"eval_samples_per_second": 9.814,
"eval_steps_per_second": 4.907,
"step": 600
},
{
"epoch": 1.02,
"mmlu_eval_accuracy": 0.4617338416384464,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.26,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.4074074074074074,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8381480119110866,
"step": 600
}
],
"max_steps": 5000,
"num_train_epochs": 9,
"total_flos": 5.585826021234278e+16,
"trial_name": null,
"trial_params": null
}