Farouk
commit files to HF hub
b2edffb
{
"best_metric": 0.41632866859436035,
"best_model_checkpoint": "./output_v2/7b_cluster014_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_014/checkpoint-1000",
"epoch": 2.8306059265811587,
"global_step": 1600,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6451,
"step": 10
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.5699,
"step": 20
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5073,
"step": 30
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.4662,
"step": 40
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.4545,
"step": 50
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.4675,
"step": 60
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.4524,
"step": 70
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.4799,
"step": 80
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.5122,
"step": 90
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.461,
"step": 100
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.4393,
"step": 110
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.4981,
"step": 120
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.4686,
"step": 130
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.469,
"step": 140
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.4926,
"step": 150
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.4213,
"step": 160
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.4412,
"step": 170
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.4607,
"step": 180
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.4537,
"step": 190
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.4358,
"step": 200
},
{
"epoch": 0.35,
"eval_loss": 0.45071524381637573,
"eval_runtime": 191.6209,
"eval_samples_per_second": 5.219,
"eval_steps_per_second": 2.609,
"step": 200
},
{
"epoch": 0.35,
"mmlu_eval_accuracy": 0.4662069900433653,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.3333333333333333,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.2129778240663887,
"step": 200
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.4516,
"step": 210
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.428,
"step": 220
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.4268,
"step": 230
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.4796,
"step": 240
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.4645,
"step": 250
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.437,
"step": 260
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.4531,
"step": 270
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.4158,
"step": 280
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.4918,
"step": 290
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.4283,
"step": 300
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.4114,
"step": 310
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.4429,
"step": 320
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.4476,
"step": 330
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.4156,
"step": 340
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.4497,
"step": 350
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.4355,
"step": 360
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.4493,
"step": 370
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.4425,
"step": 380
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.4114,
"step": 390
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.4567,
"step": 400
},
{
"epoch": 0.71,
"eval_loss": 0.4355984628200531,
"eval_runtime": 174.9677,
"eval_samples_per_second": 5.715,
"eval_steps_per_second": 2.858,
"step": 400
},
{
"epoch": 0.71,
"mmlu_eval_accuracy": 0.458230355534593,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.3793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.34782608695652173,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.1960482836625594,
"step": 400
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.4463,
"step": 410
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.4467,
"step": 420
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.422,
"step": 430
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.4487,
"step": 440
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.4473,
"step": 450
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.453,
"step": 460
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.4064,
"step": 470
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.4487,
"step": 480
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.4366,
"step": 490
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.4244,
"step": 500
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.4112,
"step": 510
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.4751,
"step": 520
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.4209,
"step": 530
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.3893,
"step": 540
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.4137,
"step": 550
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.4384,
"step": 560
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.4461,
"step": 570
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.423,
"step": 580
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.3713,
"step": 590
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.3571,
"step": 600
},
{
"epoch": 1.06,
"eval_loss": 0.4240914583206177,
"eval_runtime": 144.1354,
"eval_samples_per_second": 6.938,
"eval_steps_per_second": 3.469,
"step": 600
},
{
"epoch": 1.06,
"mmlu_eval_accuracy": 0.4612172240268643,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.2727272727272727,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.3793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.2888787748296953,
"step": 600
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.3828,
"step": 610
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.3616,
"step": 620
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.3479,
"step": 630
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.3916,
"step": 640
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.3856,
"step": 650
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.3858,
"step": 660
},
{
"epoch": 1.19,
"learning_rate": 0.0002,
"loss": 0.414,
"step": 670
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.3672,
"step": 680
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.4017,
"step": 690
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.3742,
"step": 700
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.3476,
"step": 710
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.3673,
"step": 720
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.3516,
"step": 730
},
{
"epoch": 1.31,
"learning_rate": 0.0002,
"loss": 0.4049,
"step": 740
},
{
"epoch": 1.33,
"learning_rate": 0.0002,
"loss": 0.3387,
"step": 750
},
{
"epoch": 1.34,
"learning_rate": 0.0002,
"loss": 0.3401,
"step": 760
},
{
"epoch": 1.36,
"learning_rate": 0.0002,
"loss": 0.3464,
"step": 770
},
{
"epoch": 1.38,
"learning_rate": 0.0002,
"loss": 0.3745,
"step": 780
},
{
"epoch": 1.4,
"learning_rate": 0.0002,
"loss": 0.3799,
"step": 790
},
{
"epoch": 1.42,
"learning_rate": 0.0002,
"loss": 0.3845,
"step": 800
},
{
"epoch": 1.42,
"eval_loss": 0.42181774973869324,
"eval_runtime": 144.8192,
"eval_samples_per_second": 6.905,
"eval_steps_per_second": 3.453,
"step": 800
},
{
"epoch": 1.42,
"mmlu_eval_accuracy": 0.46493289206525323,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.4146341463414634,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 1.0728023134502667,
"step": 800
},
{
"epoch": 1.43,
"learning_rate": 0.0002,
"loss": 0.3813,
"step": 810
},
{
"epoch": 1.45,
"learning_rate": 0.0002,
"loss": 0.3932,
"step": 820
},
{
"epoch": 1.47,
"learning_rate": 0.0002,
"loss": 0.3392,
"step": 830
},
{
"epoch": 1.49,
"learning_rate": 0.0002,
"loss": 0.4011,
"step": 840
},
{
"epoch": 1.5,
"learning_rate": 0.0002,
"loss": 0.4297,
"step": 850
},
{
"epoch": 1.52,
"learning_rate": 0.0002,
"loss": 0.3765,
"step": 860
},
{
"epoch": 1.54,
"learning_rate": 0.0002,
"loss": 0.4088,
"step": 870
},
{
"epoch": 1.56,
"learning_rate": 0.0002,
"loss": 0.3801,
"step": 880
},
{
"epoch": 1.57,
"learning_rate": 0.0002,
"loss": 0.3758,
"step": 890
},
{
"epoch": 1.59,
"learning_rate": 0.0002,
"loss": 0.3849,
"step": 900
},
{
"epoch": 1.61,
"learning_rate": 0.0002,
"loss": 0.3891,
"step": 910
},
{
"epoch": 1.63,
"learning_rate": 0.0002,
"loss": 0.3816,
"step": 920
},
{
"epoch": 1.65,
"learning_rate": 0.0002,
"loss": 0.3729,
"step": 930
},
{
"epoch": 1.66,
"learning_rate": 0.0002,
"loss": 0.3546,
"step": 940
},
{
"epoch": 1.68,
"learning_rate": 0.0002,
"loss": 0.3721,
"step": 950
},
{
"epoch": 1.7,
"learning_rate": 0.0002,
"loss": 0.348,
"step": 960
},
{
"epoch": 1.72,
"learning_rate": 0.0002,
"loss": 0.3976,
"step": 970
},
{
"epoch": 1.73,
"learning_rate": 0.0002,
"loss": 0.3845,
"step": 980
},
{
"epoch": 1.75,
"learning_rate": 0.0002,
"loss": 0.391,
"step": 990
},
{
"epoch": 1.77,
"learning_rate": 0.0002,
"loss": 0.3798,
"step": 1000
},
{
"epoch": 1.77,
"eval_loss": 0.41632866859436035,
"eval_runtime": 146.4332,
"eval_samples_per_second": 6.829,
"eval_steps_per_second": 3.415,
"step": 1000
},
{
"epoch": 1.77,
"mmlu_eval_accuracy": 0.46639585350385643,
"mmlu_eval_accuracy_abstract_algebra": 0.5454545454545454,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.631578947368421,
"mmlu_loss": 1.3059391756359653,
"step": 1000
},
{
"epoch": 1.79,
"learning_rate": 0.0002,
"loss": 0.3785,
"step": 1010
},
{
"epoch": 1.8,
"learning_rate": 0.0002,
"loss": 0.3682,
"step": 1020
},
{
"epoch": 1.82,
"learning_rate": 0.0002,
"loss": 0.3561,
"step": 1030
},
{
"epoch": 1.84,
"learning_rate": 0.0002,
"loss": 0.3796,
"step": 1040
},
{
"epoch": 1.86,
"learning_rate": 0.0002,
"loss": 0.3552,
"step": 1050
},
{
"epoch": 1.88,
"learning_rate": 0.0002,
"loss": 0.3337,
"step": 1060
},
{
"epoch": 1.89,
"learning_rate": 0.0002,
"loss": 0.3629,
"step": 1070
},
{
"epoch": 1.91,
"learning_rate": 0.0002,
"loss": 0.4007,
"step": 1080
},
{
"epoch": 1.93,
"learning_rate": 0.0002,
"loss": 0.3408,
"step": 1090
},
{
"epoch": 1.95,
"learning_rate": 0.0002,
"loss": 0.3738,
"step": 1100
},
{
"epoch": 1.96,
"learning_rate": 0.0002,
"loss": 0.3835,
"step": 1110
},
{
"epoch": 1.98,
"learning_rate": 0.0002,
"loss": 0.394,
"step": 1120
},
{
"epoch": 2.0,
"learning_rate": 0.0002,
"loss": 0.3833,
"step": 1130
},
{
"epoch": 2.02,
"learning_rate": 0.0002,
"loss": 0.3088,
"step": 1140
},
{
"epoch": 2.03,
"learning_rate": 0.0002,
"loss": 0.3275,
"step": 1150
},
{
"epoch": 2.05,
"learning_rate": 0.0002,
"loss": 0.2665,
"step": 1160
},
{
"epoch": 2.07,
"learning_rate": 0.0002,
"loss": 0.3261,
"step": 1170
},
{
"epoch": 2.09,
"learning_rate": 0.0002,
"loss": 0.2848,
"step": 1180
},
{
"epoch": 2.11,
"learning_rate": 0.0002,
"loss": 0.3344,
"step": 1190
},
{
"epoch": 2.12,
"learning_rate": 0.0002,
"loss": 0.3102,
"step": 1200
},
{
"epoch": 2.12,
"eval_loss": 0.4272211790084839,
"eval_runtime": 149.2515,
"eval_samples_per_second": 6.7,
"eval_steps_per_second": 3.35,
"step": 1200
},
{
"epoch": 2.12,
"mmlu_eval_accuracy": 0.4741182631719215,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.64,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.22580645161290322,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.631578947368421,
"mmlu_loss": 1.3267292114212992,
"step": 1200
},
{
"epoch": 2.14,
"learning_rate": 0.0002,
"loss": 0.3279,
"step": 1210
},
{
"epoch": 2.16,
"learning_rate": 0.0002,
"loss": 0.3034,
"step": 1220
},
{
"epoch": 2.18,
"learning_rate": 0.0002,
"loss": 0.2832,
"step": 1230
},
{
"epoch": 2.19,
"learning_rate": 0.0002,
"loss": 0.3297,
"step": 1240
},
{
"epoch": 2.21,
"learning_rate": 0.0002,
"loss": 0.2971,
"step": 1250
},
{
"epoch": 2.23,
"learning_rate": 0.0002,
"loss": 0.3342,
"step": 1260
},
{
"epoch": 2.25,
"learning_rate": 0.0002,
"loss": 0.3061,
"step": 1270
},
{
"epoch": 2.26,
"learning_rate": 0.0002,
"loss": 0.3044,
"step": 1280
},
{
"epoch": 2.28,
"learning_rate": 0.0002,
"loss": 0.2828,
"step": 1290
},
{
"epoch": 2.3,
"learning_rate": 0.0002,
"loss": 0.3011,
"step": 1300
},
{
"epoch": 2.32,
"learning_rate": 0.0002,
"loss": 0.285,
"step": 1310
},
{
"epoch": 2.34,
"learning_rate": 0.0002,
"loss": 0.2897,
"step": 1320
},
{
"epoch": 2.35,
"learning_rate": 0.0002,
"loss": 0.2908,
"step": 1330
},
{
"epoch": 2.37,
"learning_rate": 0.0002,
"loss": 0.3331,
"step": 1340
},
{
"epoch": 2.39,
"learning_rate": 0.0002,
"loss": 0.3105,
"step": 1350
},
{
"epoch": 2.41,
"learning_rate": 0.0002,
"loss": 0.321,
"step": 1360
},
{
"epoch": 2.42,
"learning_rate": 0.0002,
"loss": 0.3539,
"step": 1370
},
{
"epoch": 2.44,
"learning_rate": 0.0002,
"loss": 0.3114,
"step": 1380
},
{
"epoch": 2.46,
"learning_rate": 0.0002,
"loss": 0.2943,
"step": 1390
},
{
"epoch": 2.48,
"learning_rate": 0.0002,
"loss": 0.3232,
"step": 1400
},
{
"epoch": 2.48,
"eval_loss": 0.4280230402946472,
"eval_runtime": 147.2124,
"eval_samples_per_second": 6.793,
"eval_steps_per_second": 3.396,
"step": 1400
},
{
"epoch": 2.48,
"mmlu_eval_accuracy": 0.46287474793754874,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4418604651162791,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.6923076923076923,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.631578947368421,
"mmlu_loss": 1.2063124309593019,
"step": 1400
},
{
"epoch": 2.49,
"learning_rate": 0.0002,
"loss": 0.3221,
"step": 1410
},
{
"epoch": 2.51,
"learning_rate": 0.0002,
"loss": 0.303,
"step": 1420
},
{
"epoch": 2.53,
"learning_rate": 0.0002,
"loss": 0.2884,
"step": 1430
},
{
"epoch": 2.55,
"learning_rate": 0.0002,
"loss": 0.291,
"step": 1440
},
{
"epoch": 2.57,
"learning_rate": 0.0002,
"loss": 0.3169,
"step": 1450
},
{
"epoch": 2.58,
"learning_rate": 0.0002,
"loss": 0.301,
"step": 1460
},
{
"epoch": 2.6,
"learning_rate": 0.0002,
"loss": 0.3229,
"step": 1470
},
{
"epoch": 2.62,
"learning_rate": 0.0002,
"loss": 0.312,
"step": 1480
},
{
"epoch": 2.64,
"learning_rate": 0.0002,
"loss": 0.3365,
"step": 1490
},
{
"epoch": 2.65,
"learning_rate": 0.0002,
"loss": 0.2919,
"step": 1500
},
{
"epoch": 2.67,
"learning_rate": 0.0002,
"loss": 0.3054,
"step": 1510
},
{
"epoch": 2.69,
"learning_rate": 0.0002,
"loss": 0.3009,
"step": 1520
},
{
"epoch": 2.71,
"learning_rate": 0.0002,
"loss": 0.2621,
"step": 1530
},
{
"epoch": 2.72,
"learning_rate": 0.0002,
"loss": 0.2999,
"step": 1540
},
{
"epoch": 2.74,
"learning_rate": 0.0002,
"loss": 0.3183,
"step": 1550
},
{
"epoch": 2.76,
"learning_rate": 0.0002,
"loss": 0.2864,
"step": 1560
},
{
"epoch": 2.78,
"learning_rate": 0.0002,
"loss": 0.2863,
"step": 1570
},
{
"epoch": 2.8,
"learning_rate": 0.0002,
"loss": 0.3426,
"step": 1580
},
{
"epoch": 2.81,
"learning_rate": 0.0002,
"loss": 0.3245,
"step": 1590
},
{
"epoch": 2.83,
"learning_rate": 0.0002,
"loss": 0.3233,
"step": 1600
},
{
"epoch": 2.83,
"eval_loss": 0.4239733815193176,
"eval_runtime": 145.7087,
"eval_samples_per_second": 6.863,
"eval_steps_per_second": 3.432,
"step": 1600
},
{
"epoch": 2.83,
"mmlu_eval_accuracy": 0.4674582653302792,
"mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.45454545454545453,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.24390243902439024,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.3,
"mmlu_eval_accuracy_high_school_biology": 0.53125,
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.47619047619047616,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384,
"mmlu_eval_accuracy_high_school_physics": 0.4117647058823529,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6086956521739131,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.45454545454545453,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.631578947368421,
"mmlu_loss": 1.322269008302813,
"step": 1600
}
],
"max_steps": 5000,
"num_train_epochs": 9,
"total_flos": 2.32154379234902e+17,
"trial_name": null,
"trial_params": null
}