Nous-Hermes-llama-2-7b_7b_cluster011_partitioned_v3_standardized_011
/
checkpoint-600
/trainer_state.json
{ | |
"best_metric": 0.7251922488212585, | |
"best_model_checkpoint": "./output_v2/7b_cluster011_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_011/checkpoint-400", | |
"epoch": 1.3880855986119145, | |
"global_step": 600, | |
"is_hyper_param_search": false, | |
"is_local_process_zero": true, | |
"is_world_process_zero": true, | |
"log_history": [ | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.7957, | |
"step": 10 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.718, | |
"step": 20 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 0.73, | |
"step": 30 | |
}, | |
{ | |
"epoch": 0.09, | |
"learning_rate": 0.0002, | |
"loss": 0.7826, | |
"step": 40 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.7013, | |
"step": 50 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.7353, | |
"step": 60 | |
}, | |
{ | |
"epoch": 0.16, | |
"learning_rate": 0.0002, | |
"loss": 0.6666, | |
"step": 70 | |
}, | |
{ | |
"epoch": 0.19, | |
"learning_rate": 0.0002, | |
"loss": 0.7649, | |
"step": 80 | |
}, | |
{ | |
"epoch": 0.21, | |
"learning_rate": 0.0002, | |
"loss": 0.7018, | |
"step": 90 | |
}, | |
{ | |
"epoch": 0.23, | |
"learning_rate": 0.0002, | |
"loss": 0.7173, | |
"step": 100 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 0.7857, | |
"step": 110 | |
}, | |
{ | |
"epoch": 0.28, | |
"learning_rate": 0.0002, | |
"loss": 0.7154, | |
"step": 120 | |
}, | |
{ | |
"epoch": 0.3, | |
"learning_rate": 0.0002, | |
"loss": 0.7485, | |
"step": 130 | |
}, | |
{ | |
"epoch": 0.32, | |
"learning_rate": 0.0002, | |
"loss": 0.7114, | |
"step": 140 | |
}, | |
{ | |
"epoch": 0.35, | |
"learning_rate": 0.0002, | |
"loss": 0.7333, | |
"step": 150 | |
}, | |
{ | |
"epoch": 0.37, | |
"learning_rate": 0.0002, | |
"loss": 0.6549, | |
"step": 160 | |
}, | |
{ | |
"epoch": 0.39, | |
"learning_rate": 0.0002, | |
"loss": 0.6765, | |
"step": 170 | |
}, | |
{ | |
"epoch": 0.42, | |
"learning_rate": 0.0002, | |
"loss": 0.677, | |
"step": 180 | |
}, | |
{ | |
"epoch": 0.44, | |
"learning_rate": 0.0002, | |
"loss": 0.6763, | |
"step": 190 | |
}, | |
{ | |
"epoch": 0.46, | |
"learning_rate": 0.0002, | |
"loss": 0.6638, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.46, | |
"eval_loss": 0.7327473163604736, | |
"eval_runtime": 246.3779, | |
"eval_samples_per_second": 4.059, | |
"eval_steps_per_second": 2.029, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.46, | |
"mmlu_eval_accuracy": 0.4592376175825003, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.6363636363636364, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.7093023255813954, | |
"mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.24, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.38235294117647056, | |
"mmlu_eval_accuracy_prehistory": 0.45714285714285713, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.34705882352941175, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087, | |
"mmlu_eval_accuracy_public_relations": 0.4166666666666667, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.7272727272727273, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.45454545454545453, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.173365458184683, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.49, | |
"learning_rate": 0.0002, | |
"loss": 0.6849, | |
"step": 210 | |
}, | |
{ | |
"epoch": 0.51, | |
"learning_rate": 0.0002, | |
"loss": 0.7275, | |
"step": 220 | |
}, | |
{ | |
"epoch": 0.53, | |
"learning_rate": 0.0002, | |
"loss": 0.6976, | |
"step": 230 | |
}, | |
{ | |
"epoch": 0.56, | |
"learning_rate": 0.0002, | |
"loss": 0.6896, | |
"step": 240 | |
}, | |
{ | |
"epoch": 0.58, | |
"learning_rate": 0.0002, | |
"loss": 0.6831, | |
"step": 250 | |
}, | |
{ | |
"epoch": 0.6, | |
"learning_rate": 0.0002, | |
"loss": 0.8049, | |
"step": 260 | |
}, | |
{ | |
"epoch": 0.62, | |
"learning_rate": 0.0002, | |
"loss": 0.6878, | |
"step": 270 | |
}, | |
{ | |
"epoch": 0.65, | |
"learning_rate": 0.0002, | |
"loss": 0.6679, | |
"step": 280 | |
}, | |
{ | |
"epoch": 0.67, | |
"learning_rate": 0.0002, | |
"loss": 0.6808, | |
"step": 290 | |
}, | |
{ | |
"epoch": 0.69, | |
"learning_rate": 0.0002, | |
"loss": 0.7648, | |
"step": 300 | |
}, | |
{ | |
"epoch": 0.72, | |
"learning_rate": 0.0002, | |
"loss": 0.7605, | |
"step": 310 | |
}, | |
{ | |
"epoch": 0.74, | |
"learning_rate": 0.0002, | |
"loss": 0.7504, | |
"step": 320 | |
}, | |
{ | |
"epoch": 0.76, | |
"learning_rate": 0.0002, | |
"loss": 0.7853, | |
"step": 330 | |
}, | |
{ | |
"epoch": 0.79, | |
"learning_rate": 0.0002, | |
"loss": 0.7272, | |
"step": 340 | |
}, | |
{ | |
"epoch": 0.81, | |
"learning_rate": 0.0002, | |
"loss": 0.6934, | |
"step": 350 | |
}, | |
{ | |
"epoch": 0.83, | |
"learning_rate": 0.0002, | |
"loss": 0.7053, | |
"step": 360 | |
}, | |
{ | |
"epoch": 0.86, | |
"learning_rate": 0.0002, | |
"loss": 0.7487, | |
"step": 370 | |
}, | |
{ | |
"epoch": 0.88, | |
"learning_rate": 0.0002, | |
"loss": 0.668, | |
"step": 380 | |
}, | |
{ | |
"epoch": 0.9, | |
"learning_rate": 0.0002, | |
"loss": 0.6899, | |
"step": 390 | |
}, | |
{ | |
"epoch": 0.93, | |
"learning_rate": 0.0002, | |
"loss": 0.684, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.93, | |
"eval_loss": 0.7251922488212585, | |
"eval_runtime": 246.5381, | |
"eval_samples_per_second": 4.056, | |
"eval_steps_per_second": 2.028, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.93, | |
"mmlu_eval_accuracy": 0.46184696708834644, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, | |
"mmlu_eval_accuracy_college_medicine": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.2727272727272727, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.5, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, | |
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, | |
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.75, | |
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.5454545454545454, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, | |
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, | |
"mmlu_eval_accuracy_professional_law": 0.34705882352941175, | |
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, | |
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.1016935974982016, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.95, | |
"learning_rate": 0.0002, | |
"loss": 0.7535, | |
"step": 410 | |
}, | |
{ | |
"epoch": 0.97, | |
"learning_rate": 0.0002, | |
"loss": 0.707, | |
"step": 420 | |
}, | |
{ | |
"epoch": 0.99, | |
"learning_rate": 0.0002, | |
"loss": 0.7077, | |
"step": 430 | |
}, | |
{ | |
"epoch": 1.02, | |
"learning_rate": 0.0002, | |
"loss": 0.6389, | |
"step": 440 | |
}, | |
{ | |
"epoch": 1.04, | |
"learning_rate": 0.0002, | |
"loss": 0.6701, | |
"step": 450 | |
}, | |
{ | |
"epoch": 1.06, | |
"learning_rate": 0.0002, | |
"loss": 0.6462, | |
"step": 460 | |
}, | |
{ | |
"epoch": 1.09, | |
"learning_rate": 0.0002, | |
"loss": 0.6421, | |
"step": 470 | |
}, | |
{ | |
"epoch": 1.11, | |
"learning_rate": 0.0002, | |
"loss": 0.6822, | |
"step": 480 | |
}, | |
{ | |
"epoch": 1.13, | |
"learning_rate": 0.0002, | |
"loss": 0.5916, | |
"step": 490 | |
}, | |
{ | |
"epoch": 1.16, | |
"learning_rate": 0.0002, | |
"loss": 0.7141, | |
"step": 500 | |
}, | |
{ | |
"epoch": 1.18, | |
"learning_rate": 0.0002, | |
"loss": 0.679, | |
"step": 510 | |
}, | |
{ | |
"epoch": 1.2, | |
"learning_rate": 0.0002, | |
"loss": 0.5723, | |
"step": 520 | |
}, | |
{ | |
"epoch": 1.23, | |
"learning_rate": 0.0002, | |
"loss": 0.6451, | |
"step": 530 | |
}, | |
{ | |
"epoch": 1.25, | |
"learning_rate": 0.0002, | |
"loss": 0.6802, | |
"step": 540 | |
}, | |
{ | |
"epoch": 1.27, | |
"learning_rate": 0.0002, | |
"loss": 0.5868, | |
"step": 550 | |
}, | |
{ | |
"epoch": 1.3, | |
"learning_rate": 0.0002, | |
"loss": 0.6386, | |
"step": 560 | |
}, | |
{ | |
"epoch": 1.32, | |
"learning_rate": 0.0002, | |
"loss": 0.5967, | |
"step": 570 | |
}, | |
{ | |
"epoch": 1.34, | |
"learning_rate": 0.0002, | |
"loss": 0.618, | |
"step": 580 | |
}, | |
{ | |
"epoch": 1.36, | |
"learning_rate": 0.0002, | |
"loss": 0.6294, | |
"step": 590 | |
}, | |
{ | |
"epoch": 1.39, | |
"learning_rate": 0.0002, | |
"loss": 0.6417, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.39, | |
"eval_loss": 0.7272388935089111, | |
"eval_runtime": 247.55, | |
"eval_samples_per_second": 4.04, | |
"eval_steps_per_second": 2.02, | |
"step": 600 | |
}, | |
{ | |
"epoch": 1.39, | |
"mmlu_eval_accuracy": 0.4580576219014606, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.5, | |
"mmlu_eval_accuracy_college_chemistry": 0.25, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.4375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.4, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7, | |
"mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, | |
"mmlu_eval_accuracy_human_aging": 0.6521739130434783, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.7692307692307693, | |
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182, | |
"mmlu_eval_accuracy_management": 0.45454545454545453, | |
"mmlu_eval_accuracy_marketing": 0.72, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, | |
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.5757575757575758, | |
"mmlu_eval_accuracy_philosophy": 0.4117647058823529, | |
"mmlu_eval_accuracy_prehistory": 0.4857142857142857, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.3411764705882353, | |
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, | |
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.5555555555555556, | |
"mmlu_eval_accuracy_sociology": 0.5454545454545454, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.069228487308125, | |
"step": 600 | |
} | |
], | |
"max_steps": 5000, | |
"num_train_epochs": 12, | |
"total_flos": 1.7075910886443418e+17, | |
"trial_name": null, | |
"trial_params": null | |
} | |