|
import math |
|
from typing import List, Optional |
|
import json |
|
import timm |
|
import torch |
|
import torchvision |
|
from PIL import Image |
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
|
from torchvision import transforms |
|
|
|
from .configuration_minicpm import MiniCPMVConfig |
|
from .modeling_minicpm import MiniCPMForCausalLM, MiniCPMPreTrainedModel |
|
from .resampler import Resampler |
|
|
|
|
|
class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel): |
|
config_class = MiniCPMVConfig |
|
|
|
|
|
class MiniCPMV(MiniCPMVPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.llm = MiniCPMForCausalLM(config) |
|
self.vpm = self.init_vision_module() |
|
self.vision_dim = self.vpm.embed_dim |
|
self.embed_dim = self.llm.config.hidden_size |
|
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim) |
|
self.transform = self.init_transform() |
|
|
|
def init_vision_module(self): |
|
model = timm.create_model( |
|
self.config.vision_encoder, |
|
pretrained=False, |
|
num_classes=0, |
|
dynamic_img_size=True, |
|
dynamic_img_pad=True |
|
) |
|
|
|
if isinstance(model, timm.models.VisionTransformer): |
|
if model.attn_pool is not None: |
|
model.attn_pool = torch.nn.Identity() |
|
|
|
if self.config.drop_vision_last_layer: |
|
model.blocks = model.blocks[:-1] |
|
|
|
return model |
|
|
|
def init_resampler(self, embed_dim, vision_dim): |
|
return Resampler( |
|
grid_size=int(math.sqrt(self.config.query_num)), |
|
embed_dim=embed_dim, |
|
num_heads=embed_dim // 128, |
|
kv_dim=vision_dim, |
|
adaptive=True |
|
) |
|
|
|
def init_transform(self): |
|
return transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize( |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD |
|
), |
|
] |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.llm.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.llm.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.llm.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.llm.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.llm = decoder |
|
|
|
def get_decoder(self): |
|
return self.llm |
|
|
|
def get_vision_embedding(self, pixel_values): |
|
res = [] |
|
dtype = self.vpm.pos_embed.data.dtype |
|
for pixel_value in pixel_values: |
|
H, W = pixel_value.shape[-2:] |
|
tgt_size = ( |
|
math.ceil(H / self.vpm.patch_embed.patch_size[0]), math.ceil(W / self.vpm.patch_embed.patch_size[0])) |
|
vision_embedding = self.vpm.forward_features(pixel_value.unsqueeze(0).type(dtype)) |
|
if hasattr(self.vpm, 'num_prefix_tokens') and self.vpm.num_prefix_tokens > 0: |
|
vision_embedding = vision_embedding[:, self.vpm.num_prefix_tokens:] |
|
res.append(self.resampler(vision_embedding, tgt_size)) |
|
return torch.vstack(res) |
|
|
|
def get_vllm_embedding(self, data): |
|
if "vision_hidden_states" not in data: |
|
pixel_values_list = data["pixel_values"] |
|
vision_hidden_states = [] |
|
for pixel_values in pixel_values_list: |
|
if len(pixel_values) > 0: |
|
vision_hidden_states.append(self.get_vision_embedding(pixel_values)) |
|
elif self.training: |
|
dtype = self.vpm.pos_embed.data.dtype |
|
device = self.vpm.pos_embed.data.device |
|
dummy_image = torch.zeros( |
|
(1, 3, 224, 224), device=device, dtype=dtype |
|
) |
|
vision_hidden_states.append(self.get_vision_embedding(dummy_image)) |
|
else: |
|
vision_hidden_states.append([]) |
|
|
|
else: |
|
vision_hidden_states = data["vision_hidden_states"] |
|
|
|
vllm_embedding = ( |
|
self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb |
|
) |
|
vision_hidden_states = [ |
|
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i |
|
for i in vision_hidden_states |
|
] |
|
bs = len(data["input_ids"]) |
|
for i in range(bs): |
|
cur_vs_hs = vision_hidden_states[i] |
|
if len(cur_vs_hs) > 0: |
|
cur_vllm_emb = vllm_embedding[i] |
|
cur_image_bound = data["image_bounds"][i] |
|
if len(cur_image_bound) > 0: |
|
image_indices = torch.stack( |
|
[ |
|
torch.arange(r[0], r[1], dtype=torch.long) |
|
for r in cur_image_bound |
|
] |
|
).to(vllm_embedding.device) |
|
|
|
cur_vllm_emb.scatter_( |
|
0, |
|
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]), |
|
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]), |
|
) |
|
elif self.training: |
|
cur_vllm_emb += cur_vs_hs[0].mean() * 0 |
|
|
|
return vllm_embedding, vision_hidden_states |
|
|
|
def forward(self, data, **kwargs): |
|
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data) |
|
position_ids = data["position_ids"] |
|
if position_ids.dtype != torch.int64: |
|
position_ids = position_ids.long() |
|
|
|
return self.llm( |
|
input_ids=None, |
|
position_ids=position_ids, |
|
inputs_embeds=vllm_embedding, |
|
**kwargs |
|
) |
|
|
|
def _decode_text(self, result_ids, tokenizer): |
|
result_text = [] |
|
for result in result_ids: |
|
result = result[result != 0] |
|
if result[0] == tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == tokenizer.eos_id: |
|
result = result[:-1] |
|
result_text.append(tokenizer.decode(result).strip()) |
|
return result_text |
|
|
|
def _decode(self, inputs_embeds, tokenizer, **kwargs): |
|
output = self.llm.generate( |
|
inputs_embeds=inputs_embeds, |
|
pad_token_id=0, |
|
eos_token_id=tokenizer.eos_token_id if tokenizer is not None else kwargs.pop("eos_token_id", 2), |
|
**kwargs |
|
) |
|
return output |
|
|
|
def generate( |
|
self, |
|
input_ids, |
|
pixel_values=None, |
|
image_sizes=[], |
|
image_bounds=[], |
|
tgt_sizes=[], |
|
tokenizer=None, |
|
vision_hidden_states=None, |
|
**kwargs |
|
): |
|
bs = len(input_ids) |
|
img_list = pixel_values |
|
if img_list == None: |
|
img_list = [[] for i in range(bs)] |
|
assert bs == len(img_list) |
|
|
|
if vision_hidden_states is None: |
|
pixel_values = [] |
|
for i in range(bs): |
|
img_inps = [] |
|
for img in img_list[i]: |
|
img_inps.append(img.to(self.device, self.dtype)) |
|
pixel_values.append(img_inps) |
|
|
|
|
|
( |
|
input_embeds, |
|
vision_hidden_states, |
|
) = self.get_vllm_embedding({ |
|
"input_ids": input_ids, |
|
"pixel_values": pixel_values, |
|
"image_sizes": image_sizes, |
|
"image_bounds": image_bounds, |
|
"tgt_sizes": tgt_sizes |
|
}) |
|
result = self._decode(input_embeds, tokenizer, **kwargs) |
|
|
|
return result |
|
|
|
def chat( |
|
self, |
|
image, |
|
msgs, |
|
context, |
|
tokenizer, |
|
processor, |
|
vision_hidden_states=None, |
|
max_new_tokens=1024, |
|
sampling=True, |
|
max_inp_length=2048, |
|
**kwargs |
|
): |
|
if isinstance(msgs, str): |
|
msgs = json.loads(msgs) |
|
|
|
if image is not None and isinstance(msgs[0]['content'], str): |
|
msgs[0]['content'] = '(<image>./</image>)\n' + msgs[0]['content'] |
|
|
|
prompt = processor.tokenizer.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True) |
|
inputs = processor(prompt, [image], return_tensors="pt").to(self.device) |
|
|
|
if sampling: |
|
generation_config = { |
|
"top_p": 0.8, |
|
"top_k": 100, |
|
"temperature": 0.7, |
|
"do_sample": True, |
|
"repetition_penalty": 1.05 |
|
} |
|
else: |
|
generation_config = { |
|
"num_beams": 3, |
|
"repetition_penalty": 1.2, |
|
} |
|
|
|
generation_config.update( |
|
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys() |
|
) |
|
with torch.inference_mode(): |
|
res = self.generate( |
|
**inputs, |
|
tokenizer=tokenizer, |
|
max_new_tokens=max_new_tokens, |
|
vision_hidden_states=vision_hidden_states, |
|
**generation_config, |
|
) |
|
res = self._decode_text(res, tokenizer) |
|
answer = res[0] |
|
context = msgs.copy() |
|
context.append({"role": "assistant", "content": answer}) |
|
|
|
return answer, context, generation_config |
|
|
|
|