Hvare commited on
Commit
3e3e9de
1 Parent(s): ba18c70

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:10330
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: indobenchmark/indobert-base-p2
12
+ datasets: []
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: Pura Ulun Danu terletak sekitar 56 kilometer dari Kota Denpasar.
26
+ sentences:
27
+ - Dalam tujuh bulan kehamilan, organ tubuh bayi sudah sempurna.
28
+ - Dokter Adeline menjelaskan aturan-aturan agar diabetisi aman berpuasa.
29
+ - Pura Ulun Danu terletak sekitar satu jam perjalanan dari Kota Denpasar.
30
+ - source_sentence: Di luar ujung barat laut, taiga dominan, mencakup bagian besar
31
+ dari seluruh Siberia.
32
+ sentences:
33
+ - Banyak keraguan mengenai tanggal kelahiran Gaudapa.
34
+ - Sebagian besar Siberia terletak di ujung barat laut,.
35
+ - Maia menyaksikan balapan tanpa alasan.
36
+ - source_sentence: Widodo Cahyono Putro adalah seorang pelatih dan pemain sepak bola
37
+ legendaris Indonesia.
38
+ sentences:
39
+ - Ia berjanji untuk jatuh di lubang yang sama.
40
+ - Pemain sepak bola legendaris pasti menjadi pelatih sepak bola.
41
+ - Nazaruddin menegaskan bahwa mantan Wakil Ketua Komisi II DPR itu menerima uang
42
+ dari proyek e-KTP sebesar $500 ribu.
43
+ - source_sentence: Salah satunya seorang lelaki yang sedang memakan permen karet yang
44
+ dengan paksa dikeluarkan dari mulutnya.
45
+ sentences:
46
+ - Charles Leclerc gagal menjadi juara dunia F2.
47
+ - Pendukung pembrontakan Cina sudah tidak ada.
48
+ - Lelaki itu bukan salah satunya.
49
+ - source_sentence: Tumenggung Wirapraja setelah mangkat dimakamkan di Kebon Alas Warudoyong,
50
+ Kecamatan Panumbangan, Kabupaten Ciamis.
51
+ sentences:
52
+ - Peristiwa Pemberontakan Besar di Minahasa memiliki dampak besar pada tentara Sekutu.
53
+ - Di hari libur ini, Pengunjung semua taman nasional tidak dibebaskan biaya.
54
+ - Tumenggung Wirapraja dikremasi setelah dipastikan mangkat dan abunya kemudian
55
+ dilarungkan ke Pantai Laut Selatan.
56
+ pipeline_tag: sentence-similarity
57
+ model-index:
58
+ - name: SentenceTransformer based on indobenchmark/indobert-base-p2
59
+ results:
60
+ - task:
61
+ type: semantic-similarity
62
+ name: Semantic Similarity
63
+ dataset:
64
+ name: sts dev
65
+ type: sts-dev
66
+ metrics:
67
+ - type: pearson_cosine
68
+ value: -0.05296221890135024
69
+ name: Pearson Cosine
70
+ - type: spearman_cosine
71
+ value: -0.06107163627723088
72
+ name: Spearman Cosine
73
+ - type: pearson_manhattan
74
+ value: -0.06399377304712585
75
+ name: Pearson Manhattan
76
+ - type: spearman_manhattan
77
+ value: -0.06835801919486152
78
+ name: Spearman Manhattan
79
+ - type: pearson_euclidean
80
+ value: -0.0642574675392147
81
+ name: Pearson Euclidean
82
+ - type: spearman_euclidean
83
+ value: -0.06906447787846218
84
+ name: Spearman Euclidean
85
+ - type: pearson_dot
86
+ value: -0.024528943319169508
87
+ name: Pearson Dot
88
+ - type: spearman_dot
89
+ value: -0.024236369255517205
90
+ name: Spearman Dot
91
+ - type: pearson_max
92
+ value: -0.024528943319169508
93
+ name: Pearson Max
94
+ - type: spearman_max
95
+ value: -0.024236369255517205
96
+ name: Spearman Max
97
+ ---
98
+
99
+ # SentenceTransformer based on indobenchmark/indobert-base-p2
100
+
101
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
102
+
103
+ ## Model Details
104
+
105
+ ### Model Description
106
+ - **Model Type:** Sentence Transformer
107
+ - **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
108
+ - **Maximum Sequence Length:** 75 tokens
109
+ - **Output Dimensionality:** 768 tokens
110
+ - **Similarity Function:** Cosine Similarity
111
+ <!-- - **Training Dataset:** Unknown -->
112
+ <!-- - **Language:** Unknown -->
113
+ <!-- - **License:** Unknown -->
114
+
115
+ ### Model Sources
116
+
117
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
118
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
119
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
120
+
121
+ ### Full Model Architecture
122
+
123
+ ```
124
+ SentenceTransformer(
125
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
126
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
127
+ )
128
+ ```
129
+
130
+ ## Usage
131
+
132
+ ### Direct Usage (Sentence Transformers)
133
+
134
+ First install the Sentence Transformers library:
135
+
136
+ ```bash
137
+ pip install -U sentence-transformers
138
+ ```
139
+
140
+ Then you can load this model and run inference.
141
+ ```python
142
+ from sentence_transformers import SentenceTransformer
143
+
144
+ # Download from the 🤗 Hub
145
+ model = SentenceTransformer("Hvare/Athena-indobert-finetuned-indonli")
146
+ # Run inference
147
+ sentences = [
148
+ 'Tumenggung Wirapraja setelah mangkat dimakamkan di Kebon Alas Warudoyong, Kecamatan Panumbangan, Kabupaten Ciamis.',
149
+ 'Tumenggung Wirapraja dikremasi setelah dipastikan mangkat dan abunya kemudian dilarungkan ke Pantai Laut Selatan.',
150
+ 'Di hari libur ini, Pengunjung semua taman nasional tidak dibebaskan biaya.',
151
+ ]
152
+ embeddings = model.encode(sentences)
153
+ print(embeddings.shape)
154
+ # [3, 768]
155
+
156
+ # Get the similarity scores for the embeddings
157
+ similarities = model.similarity(embeddings, embeddings)
158
+ print(similarities.shape)
159
+ # [3, 3]
160
+ ```
161
+
162
+ <!--
163
+ ### Direct Usage (Transformers)
164
+
165
+ <details><summary>Click to see the direct usage in Transformers</summary>
166
+
167
+ </details>
168
+ -->
169
+
170
+ <!--
171
+ ### Downstream Usage (Sentence Transformers)
172
+
173
+ You can finetune this model on your own dataset.
174
+
175
+ <details><summary>Click to expand</summary>
176
+
177
+ </details>
178
+ -->
179
+
180
+ <!--
181
+ ### Out-of-Scope Use
182
+
183
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
184
+ -->
185
+
186
+ ## Evaluation
187
+
188
+ ### Metrics
189
+
190
+ #### Semantic Similarity
191
+ * Dataset: `sts-dev`
192
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
193
+
194
+ | Metric | Value |
195
+ |:-------------------|:------------|
196
+ | pearson_cosine | -0.053 |
197
+ | spearman_cosine | -0.0611 |
198
+ | pearson_manhattan | -0.064 |
199
+ | spearman_manhattan | -0.0684 |
200
+ | pearson_euclidean | -0.0643 |
201
+ | spearman_euclidean | -0.0691 |
202
+ | pearson_dot | -0.0245 |
203
+ | spearman_dot | -0.0242 |
204
+ | pearson_max | -0.0245 |
205
+ | **spearman_max** | **-0.0242** |
206
+
207
+ <!--
208
+ ## Bias, Risks and Limitations
209
+
210
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
211
+ -->
212
+
213
+ <!--
214
+ ### Recommendations
215
+
216
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
217
+ -->
218
+
219
+ ## Training Details
220
+
221
+ ### Training Dataset
222
+
223
+ #### Unnamed Dataset
224
+
225
+
226
+ * Size: 10,330 training samples
227
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
228
+ * Approximate statistics based on the first 1000 samples:
229
+ | | sentence_0 | sentence_1 | label |
230
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
231
+ | type | string | string | int |
232
+ | details | <ul><li>min: 11 tokens</li><li>mean: 29.47 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.25 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>0: ~35.90%</li><li>1: ~32.00%</li><li>2: ~32.10%</li></ul> |
233
+ * Samples:
234
+ | sentence_0 | sentence_1 | label |
235
+ |:--------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------|:---------------|
236
+ | <code>"" "Akan ada protes dan hal-hal lain, semua nya sudah direncanakan," "ungkap oposisi kepada El Mundo."</code> | <code>Protes dan hal-hal lain sudah direncanakan.</code> | <code>0</code> |
237
+ | <code>Tak jarang, bangun kesiangan pun jadi alasan untuk tak berolahraga.</code> | <code>Salah satu alasan tidak berolahraga adalah bangun kesiangan.</code> | <code>0</code> |
238
+ | <code>Namun, saingannya Prabowo Subianto juga mendeklarasikan kemenangan, membuat orang Indonesia bingung.</code> | <code>Prabowo menerima bahwa Dia kalah.</code> | <code>2</code> |
239
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
240
+ ```json
241
+ {
242
+ "scale": 20.0,
243
+ "similarity_fct": "cos_sim"
244
+ }
245
+ ```
246
+
247
+ ### Training Hyperparameters
248
+ #### Non-Default Hyperparameters
249
+
250
+ - `eval_strategy`: steps
251
+ - `per_device_train_batch_size`: 16
252
+ - `per_device_eval_batch_size`: 16
253
+ - `num_train_epochs`: 1
254
+ - `multi_dataset_batch_sampler`: round_robin
255
+
256
+ #### All Hyperparameters
257
+ <details><summary>Click to expand</summary>
258
+
259
+ - `overwrite_output_dir`: False
260
+ - `do_predict`: False
261
+ - `eval_strategy`: steps
262
+ - `prediction_loss_only`: True
263
+ - `per_device_train_batch_size`: 16
264
+ - `per_device_eval_batch_size`: 16
265
+ - `per_gpu_train_batch_size`: None
266
+ - `per_gpu_eval_batch_size`: None
267
+ - `gradient_accumulation_steps`: 1
268
+ - `eval_accumulation_steps`: None
269
+ - `learning_rate`: 5e-05
270
+ - `weight_decay`: 0.0
271
+ - `adam_beta1`: 0.9
272
+ - `adam_beta2`: 0.999
273
+ - `adam_epsilon`: 1e-08
274
+ - `max_grad_norm`: 1
275
+ - `num_train_epochs`: 1
276
+ - `max_steps`: -1
277
+ - `lr_scheduler_type`: linear
278
+ - `lr_scheduler_kwargs`: {}
279
+ - `warmup_ratio`: 0.0
280
+ - `warmup_steps`: 0
281
+ - `log_level`: passive
282
+ - `log_level_replica`: warning
283
+ - `log_on_each_node`: True
284
+ - `logging_nan_inf_filter`: True
285
+ - `save_safetensors`: True
286
+ - `save_on_each_node`: False
287
+ - `save_only_model`: False
288
+ - `restore_callback_states_from_checkpoint`: False
289
+ - `no_cuda`: False
290
+ - `use_cpu`: False
291
+ - `use_mps_device`: False
292
+ - `seed`: 42
293
+ - `data_seed`: None
294
+ - `jit_mode_eval`: False
295
+ - `use_ipex`: False
296
+ - `bf16`: False
297
+ - `fp16`: False
298
+ - `fp16_opt_level`: O1
299
+ - `half_precision_backend`: auto
300
+ - `bf16_full_eval`: False
301
+ - `fp16_full_eval`: False
302
+ - `tf32`: None
303
+ - `local_rank`: 0
304
+ - `ddp_backend`: None
305
+ - `tpu_num_cores`: None
306
+ - `tpu_metrics_debug`: False
307
+ - `debug`: []
308
+ - `dataloader_drop_last`: False
309
+ - `dataloader_num_workers`: 0
310
+ - `dataloader_prefetch_factor`: None
311
+ - `past_index`: -1
312
+ - `disable_tqdm`: False
313
+ - `remove_unused_columns`: True
314
+ - `label_names`: None
315
+ - `load_best_model_at_end`: False
316
+ - `ignore_data_skip`: False
317
+ - `fsdp`: []
318
+ - `fsdp_min_num_params`: 0
319
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
320
+ - `fsdp_transformer_layer_cls_to_wrap`: None
321
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
322
+ - `deepspeed`: None
323
+ - `label_smoothing_factor`: 0.0
324
+ - `optim`: adamw_torch
325
+ - `optim_args`: None
326
+ - `adafactor`: False
327
+ - `group_by_length`: False
328
+ - `length_column_name`: length
329
+ - `ddp_find_unused_parameters`: None
330
+ - `ddp_bucket_cap_mb`: None
331
+ - `ddp_broadcast_buffers`: False
332
+ - `dataloader_pin_memory`: True
333
+ - `dataloader_persistent_workers`: False
334
+ - `skip_memory_metrics`: True
335
+ - `use_legacy_prediction_loop`: False
336
+ - `push_to_hub`: False
337
+ - `resume_from_checkpoint`: None
338
+ - `hub_model_id`: None
339
+ - `hub_strategy`: every_save
340
+ - `hub_private_repo`: False
341
+ - `hub_always_push`: False
342
+ - `gradient_checkpointing`: False
343
+ - `gradient_checkpointing_kwargs`: None
344
+ - `include_inputs_for_metrics`: False
345
+ - `eval_do_concat_batches`: True
346
+ - `fp16_backend`: auto
347
+ - `push_to_hub_model_id`: None
348
+ - `push_to_hub_organization`: None
349
+ - `mp_parameters`:
350
+ - `auto_find_batch_size`: False
351
+ - `full_determinism`: False
352
+ - `torchdynamo`: None
353
+ - `ray_scope`: last
354
+ - `ddp_timeout`: 1800
355
+ - `torch_compile`: False
356
+ - `torch_compile_backend`: None
357
+ - `torch_compile_mode`: None
358
+ - `dispatch_batches`: None
359
+ - `split_batches`: None
360
+ - `include_tokens_per_second`: False
361
+ - `include_num_input_tokens_seen`: False
362
+ - `neftune_noise_alpha`: None
363
+ - `optim_target_modules`: None
364
+ - `batch_eval_metrics`: False
365
+ - `batch_sampler`: batch_sampler
366
+ - `multi_dataset_batch_sampler`: round_robin
367
+
368
+ </details>
369
+
370
+ ### Training Logs
371
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
372
+ |:------:|:----:|:-------------:|:--------------------:|
373
+ | 0.0991 | 64 | - | -0.0411 |
374
+ | 0.1981 | 128 | - | -0.0426 |
375
+ | 0.2972 | 192 | - | -0.0419 |
376
+ | 0.3963 | 256 | - | -0.0425 |
377
+ | 0.4954 | 320 | - | -0.0384 |
378
+ | 0.5944 | 384 | - | -0.0260 |
379
+ | 0.6935 | 448 | - | -0.0216 |
380
+ | 0.7740 | 500 | 0.0531 | - |
381
+ | 0.7926 | 512 | - | -0.0243 |
382
+ | 0.8916 | 576 | - | -0.0241 |
383
+ | 0.9907 | 640 | - | -0.0242 |
384
+ | 1.0 | 646 | - | -0.0242 |
385
+
386
+
387
+ ### Framework Versions
388
+ - Python: 3.10.12
389
+ - Sentence Transformers: 3.0.1
390
+ - Transformers: 4.41.2
391
+ - PyTorch: 2.3.0+cu121
392
+ - Accelerate: 0.31.0
393
+ - Datasets: 2.19.2
394
+ - Tokenizers: 0.19.1
395
+
396
+ ## Citation
397
+
398
+ ### BibTeX
399
+
400
+ #### Sentence Transformers
401
+ ```bibtex
402
+ @inproceedings{reimers-2019-sentence-bert,
403
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
404
+ author = "Reimers, Nils and Gurevych, Iryna",
405
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
406
+ month = "11",
407
+ year = "2019",
408
+ publisher = "Association for Computational Linguistics",
409
+ url = "https://arxiv.org/abs/1908.10084",
410
+ }
411
+ ```
412
+
413
+ #### MultipleNegativesRankingLoss
414
+ ```bibtex
415
+ @misc{henderson2017efficient,
416
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
417
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
418
+ year={2017},
419
+ eprint={1705.00652},
420
+ archivePrefix={arXiv},
421
+ primaryClass={cs.CL}
422
+ }
423
+ ```
424
+
425
+ <!--
426
+ ## Glossary
427
+
428
+ *Clearly define terms in order to be accessible across audiences.*
429
+ -->
430
+
431
+ <!--
432
+ ## Model Card Authors
433
+
434
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
435
+ -->
436
+
437
+ <!--
438
+ ## Model Card Contact
439
+
440
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
441
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "indobenchmark/indobert-base-p2",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.41.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:178c51f5d3c5fe44b0cb3264334f1dbf2709e260c86f4c728774ce33a1b4664d
3
+ size 497787752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 75,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 75,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff