ernestum commited on
Commit
8c219a1
1 Parent(s): 6cb6d25

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/Walker2d-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: seals/Walker2d-v1
16
+ type: seals/Walker2d-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2465.56 +/- 272.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **seals/Walker2d-v1**
25
+ This is a trained model of a **PPO** agent playing **seals/Walker2d-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Walker2d-v1 -orga HumanCompatibleAI -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env seals/Walker2d-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/Walker2d-v1 -orga HumanCompatibleAI -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env seals/Walker2d-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env seals/Walker2d-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/Walker2d-v1 -f logs/ -orga HumanCompatibleAI
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 8),
66
+ ('clip_range', 0.4),
67
+ ('ent_coef', 0.00013057334805552262),
68
+ ('gae_lambda', 0.92),
69
+ ('gamma', 0.98),
70
+ ('learning_rate', 3.791707778339674e-05),
71
+ ('max_grad_norm', 0.6),
72
+ ('n_envs', 1),
73
+ ('n_epochs', 5),
74
+ ('n_steps', 2048),
75
+ ('n_timesteps', 1000000.0),
76
+ ('normalize',
77
+ {'gamma': 0.98, 'norm_obs': False, 'norm_reward': True}),
78
+ ('policy', 'MlpPolicy'),
79
+ ('policy_kwargs',
80
+ {'activation_fn': <class 'torch.nn.modules.activation.ReLU'>,
81
+ 'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
82
+ 'net_arch': [{'pi': [256, 256], 'vf': [256, 256]}]}),
83
+ ('vf_coef', 0.6167177795726859),
84
+ ('normalize_kwargs',
85
+ {'norm_obs': {'gamma': 0.98,
86
+ 'norm_obs': False,
87
+ 'norm_reward': True},
88
+ 'norm_reward': False})])
89
+ ```
90
+
91
+ # Environment Arguments
92
+ ```python
93
+ {'render_mode': 'rgb_array'}
94
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
+ - - device
7
+ - cpu
8
+ - - env
9
+ - seals/Walker2d-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 0
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - - seals
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - gymnasium_models
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - 4
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2325518011
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 8
4
+ - - clip_range
5
+ - 0.4
6
+ - - ent_coef
7
+ - 0.00013057334805552262
8
+ - - gae_lambda
9
+ - 0.92
10
+ - - gamma
11
+ - 0.98
12
+ - - learning_rate
13
+ - 3.791707778339674e-05
14
+ - - max_grad_norm
15
+ - 0.6
16
+ - - n_envs
17
+ - 1
18
+ - - n_epochs
19
+ - 5
20
+ - - n_steps
21
+ - 2048
22
+ - - n_timesteps
23
+ - 1000000.0
24
+ - - normalize
25
+ - gamma: 0.98
26
+ norm_obs: false
27
+ norm_reward: true
28
+ - - policy
29
+ - MlpPolicy
30
+ - - policy_kwargs
31
+ - activation_fn: !!python/name:torch.nn.modules.activation.ReLU ''
32
+ features_extractor_class: !!python/name:imitation.policies.base.NormalizeFeaturesExtractor ''
33
+ net_arch:
34
+ - pi:
35
+ - 256
36
+ - 256
37
+ vf:
38
+ - 256
39
+ - 256
40
+ - - vf_coef
41
+ - 0.6167177795726859
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
ppo-seals-Walker2d-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:081b6f02a9ca88810147906fded58f8d8e3401d0ebe5ef985a9c963aac82a7cf
3
+ size 1750916
ppo-seals-Walker2d-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.0a3
ppo-seals-Walker2d-v1/data ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f699b2fcee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f699b2fcf70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f699b281040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f699b2810d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f699b281160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f699b2811f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f699b281280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f699b281310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f699b2813a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f699b281430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f699b2814c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f699b281550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f699b2f8de0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVvQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1jBhmZWF0dXJlc19leHRyYWN0b3JfY2xhc3OUjBdpbWl0YXRpb24ucG9saWNpZXMuYmFzZZSMGk5vcm1hbGl6ZUZlYXR1cmVzRXh0cmFjdG9ylJOUdS4=",
26
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
27
+ "net_arch": {
28
+ "pi": [
29
+ 256,
30
+ 256
31
+ ],
32
+ "vf": [
33
+ 256,
34
+ 256
35
+ ]
36
+ },
37
+ "features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
38
+ },
39
+ "num_timesteps": 1001472,
40
+ "_total_timesteps": 1000000,
41
+ "_num_timesteps_at_start": 0,
42
+ "seed": 0,
43
+ "action_noise": null,
44
+ "start_time": 1694771152584511364,
45
+ "learning_rate": {
46
+ ":type:": "<class 'function'>",
47
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwPhJN9QJE+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
48
+ },
49
+ "tensorboard_log": null,
50
+ "_last_obs": null,
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVBQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaQAAAAAAAAAPaIxDSw/2a/1Tcm3mEC9D+A8dg01V4MP4O28cCag2C/o8/3sSBscj9nnmMepc9kv5jRX0lVklA/GGOj6zY1UD+O1hSLh0Rzv3BihFNvQFi/dIDVbpEVZT9I6lqiTc5bv+rmaxRxYGE/S3dLIA+0cj/RzBibIiV0v91QJbAq2nA/jy7rzR2kcz8GH3drjfFSv5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsShpSMAUOUdJRSlC4="
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": false,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": -0.0014719999999999178,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKUh2n1FpfyMAWyUTegDjAF0lEdAoNdz3IuGsXV9lChoBkdAoJRyz7di2GgHTegDaAhHQKDYxo7muDB1fZQoaAZHQKSiAvrWy1NoB03oA2gIR0Cg4Sp48loldX2UKGgGR0CkK0zefqX4aAdN6ANoCEdAoOJ/D7655XV9lChoBkdApAbmT/yXlmgHTegDaAhHQKDqyjbi6xx1fZQoaAZHQKRbQGJN0vJoB03oA2gIR0Cg7BujASFodX2UKGgGR0CigiicG1QZaAdN6ANoCEdAoPRdDUmUn3V9lChoBkdApWhubCrLhmgHTegDaAhHQKD1rxTbWVh1fZQoaAZHQKHylTnaFmFoB03oA2gIR0Cg/bVH4GlidX2UKGgGR0CgMjsjeKsNaAdN6ANoCEdAoP8L5Ec81XV9lChoBkdApGAKrvLHMmgHTegDaAhHQKEHD1uivgZ1fZQoaAZHQKE6HCpFTehoB03oA2gIR0ChCGJMHryEdX2UKGgGR0Chu9814xDcaAdN6ANoCEdAoRBpqEeyRnV9lChoBkdApSNX+GXXy2gHTegDaAhHQKERugrYoRZ1fZQoaAZHQKTsItT1kDpoB03oA2gIR0ChGf63I+4cdX2UKGgGR0CiJb7gbZOBaAdN6ANoCEdAoRtNdRiw0XV9lChoBkdAoDSHDP4VRGgHTegDaAhHQKEjqaqjrRl1fZQoaAZHQKICvzGPxQVoB03oA2gIR0ChJPpZfUnYdX2UKGgGR0CjQ6sQ2/BWaAdN6ANoCEdAoS1l4qwyI3V9lChoBkdAo8Sv5SFXaWgHTegDaAhHQKEuuEZBLPF1fZQoaAZHQKG0LxDst05oB03oA2gIR0ChNwUy57PZdX2UKGgGR0CljG1x0dR0aAdN6ANoCEdAoThWdupCKXV9lChoBkdAnceLyc0+DGgHTegDaAhHQKFAvUe+23N1fZQoaAZHQJ80blT3qRloB03oA2gIR0ChQhE8JUo8dX2UKGgGR0CeSD6Uqx1QaAdN6ANoCEdAoUqPsJIDo3V9lChoBkdAoWEeu/1xsGgHTegDaAhHQKFL5CKrJbN1fZQoaAZHQKMRpr1M/QloB03oA2gIR0ChVC76Hj6vdX2UKGgGR0CgxEJTER8MaAdN6ANoCEdAoVV+MdcSoXV9lChoBkdAoQA2m1pj+mgHTegDaAhHQKFdtFhG6PN1fZQoaAZHQKONmyUs4DNoB03oA2gIR0ChXwtc4YJmdX2UKGgGR0CixP2mxdIHaAdN6ANoCEdAoWdqKFZgX3V9lChoBkdAook6EHt4RmgHTegDaAhHQKFowHXVbzN1fZQoaAZHQKEe1863iJhoB03oA2gIR0ChcRdmg8KYdX2UKGgGR0CidT83++/QaAdN6ANoCEdAoXJrGYKIBXV9lChoBkdApnItnPE872gHTegDaAhHQKF6xMzMzM11fZQoaAZHQKPiZL/0dzZoB03oA2gIR0ChfBVSn+AFdX2UKGgGR0CiuC4G+sYEaAdN6ANoCEdAoYR85Qxes3V9lChoBkdAn67yhrWRR2gHTegDaAhHQKGFziMHbAV1fZQoaAZHQKNDKISlFc9oB03oA2gIR0ChhyNhE0BPdX2UKGgGR0CjUvx59mYjaAdN6ANoCEdAoY8gfIS13XV9lChoBkdAoxvk65oXbmgHTegDaAhHQKGQeHJLdvd1fZQoaAZHQKI5RzOoo/loB03oA2gIR0ChmIYAjps5dX2UKGgGR0Cj+DwudwvQaAdN6ANoCEdAoZnbLns9jnV9lChoBkdAolSL9uP3jGgHTegDaAhHQKGiMiGnGbV1fZQoaAZHQKDChCZ4Oc5oB03oA2gIR0Cho4ScLBsRdX2UKGgGR0ChYGk+5e7daAdN6ANoCEdAoavcdLg4wXV9lChoBkdAo3RF+9allGgHTegDaAhHQKGtLt1IRRN1fZQoaAZHQKGP5L8JlatoB03oA2gIR0ChtY0wztTldX2UKGgGR0Ci+w4ZdfLLaAdN6ANoCEdAobbh51Ng0HV9lChoBkdAoDnlo6CDmWgHTegDaAhHQKG/RrtVrAR1fZQoaAZHQKFjjadtl7NoB03oA2gIR0ChwJzIV/MGdX2UKGgGR0CgTgXrUsnRaAdN6ANoCEdAockP5YYBNnV9lChoBkdAosu8MspXqGgHTegDaAhHQKHKY65oXbd1fZQoaAZHQKOjlDsMRYloB03oA2gIR0Ch0svbGm1qdX2UKGgGR0CkShXOv+wUaAdN6ANoCEdAodQlSqEOAnV9lChoBkdAoOe63PRiPWgHTegDaAhHQKHckrRSgoR1fZQoaAZHQKFQyarmyPdoB03oA2gIR0Ch3eg/cFhYdX2UKGgGR0CjFt0elsP8aAdN6ANoCEdAoeY3ZsbednV9lChoBkdAotMoB3iaRmgHTegDaAhHQKHniljVhCt1fZQoaAZHQKJJKnBtUGVoB03oA2gIR0Ch8AXBP9DQdX2UKGgGR0Cijkj2zv7WaAdN6ANoCEdAofFb92ovSXV9lChoBkdAoClTrcCYC2gHTegDaAhHQKH5z94u9OB1fZQoaAZHQKLB09ytFKFoB03oA2gIR0Ch+yURvm5ldX2UKGgGR0CeagB+WnjyaAdN6ANoCEdAogOWD15B1XV9lChoBkdAo4gdByCFsmgHTegDaAhHQKIE5vIfbK11fZQoaAZHQKJiU3fhuO1oB03oA2gIR0CiDUbFbVz7dX2UKGgGR0Cbzgo/RmbtaAdN6ANoCEdAog6boZAIIHV9lChoBkdAoP1KRyOrAGgHTegDaAhHQKIW+mbb1yx1fZQoaAZHQJ9eBqN6w+toB03oA2gIR0CiGEwRGtp3dX2UKGgGR0CldTqNp/PPaAdN6ANoCEdAoiC1W2gFo3V9lChoBkdAoxNrMqz7dmgHTegDaAhHQKIiBklNUOx1fZQoaAZHQKW+YRGtp25oB03oA2gIR0CiKtjQRf4RdX2UKGgGR0CoQWIV2zOYaAdN6ANoCEdAoiwq7oSteXV9lChoBkdApS5lev6j32gHTegDaAhHQKI0hshxHXp1fZQoaAZHQKAwwEvCdjJoB03oA2gIR0CiNdluNxVAdX2UKGgGR0ChylpI1+AmaAdN6ANoCEdAoj4vDUExI3V9lChoBkdAoo2LM1TBImgHTegDaAhHQKI/gP6sQup1fZQoaAZHQKGw9QdCE6FoB03oA2gIR0CiR9NtIkJKdX2UKGgGR0Ci+Bw2dd3TaAdN6ANoCEdAokkj655JLHV9lChoBkdAoSh0MmWt2mgHTegDaAhHQKJRdyq+8Gt1fZQoaAZHQKG1+nFYMfBoB03oA2gIR0CiUslQMx46dX2UKGgGR0ChRmaasp5NaAdN6ANoCEdAolQbcM3IdXV9lChoBkdAoTRE/t6X0GgHTegDaAhHQKJciYu01Il1fZQoaAZHQKC7Gyj59E1oB03oA2gIR0CiXeAIhQnAdX2UKGgGR0CkaG7xmTTwaAdN6ANoCEdAomZFocrAg3V9lChoBkdAoavvW1+iJ2gHTegDaAhHQKJnl81Gb1B1fZQoaAZHQKIV7hisnzBoB03oA2gIR0Cib+xCIDYAdX2UKGgGR0CgTNiQkonbaAdN6ANoCEdAonE7sfJV83V9lChoBkdAoGl6VGCqZWgHTegDaAhHQKJ5qDYh+v11fZQoaAZHQKFrQ55qubJoB03oA2gIR0Cievg/keZHdX2UKGgGR0ChgvcEeQuFaAdN6ANoCEdAooNNk6Lfk3V9lChoBkdApk2LZlFtsWgHTegDaAhHQKKEo5Gz8gp1fZQoaAZHQKOsqInBtUJoB03oA2gIR0CijQurhisodX2UKGgGR0ChWUD5CWu6aAdN6ANoCEdAoo5epuMuOHV9lChoBkdAouMdBIFvAGgHTegDaAhHQKKWtL7oB7x1fZQoaAZHQKJLPeBQN1BoB03oA2gIR0CimAUTcqOMdX2UKGgGR0CjWBJiI+GHaAdN6ANoCEdAoqBtQfp2U3V9lChoBkdApCkAtL+PzWgHTegDaAhHQKKhvYp2ECh1fZQoaAZHQKLKu/nGKhtoB03oA2gIR0Ciqhp4rz5HdX2UKGgGR0CikJb6Hj6vaAdN6ANoCEdAoqttEG7jDXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 2445,
73
+ "observation_space": {
74
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
75
+ ":serialized:": "gAWVvQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgUSxKFlGgYdJRSlIwGX3NoYXBllEsShZSMA2xvd5RoECiWkAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaApLEoWUaBh0lFKUjARoaWdolGgQKJaQAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksShZRoGHSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
76
+ "dtype": "float64",
77
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False]",
78
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False]",
79
+ "_shape": [
80
+ 18
81
+ ],
82
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf]",
83
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
84
+ "low_repr": "-inf",
85
+ "high_repr": "inf",
86
+ "_np_random": null
87
+ },
88
+ "action_space": {
89
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
90
+ ":serialized:": "gAWVeAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgYAAAAAAAAAAQEBAQEBlGgUSwaFlGgYdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoECiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUaBh0lFKUjARoaWdolGgQKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksGhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgxjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg8ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
91
+ "dtype": "float32",
92
+ "bounded_below": "[ True True True True True True]",
93
+ "bounded_above": "[ True True True True True True]",
94
+ "_shape": [
95
+ 6
96
+ ],
97
+ "low": "[-1. -1. -1. -1. -1. -1.]",
98
+ "high": "[1. 1. 1. 1. 1. 1.]",
99
+ "low_repr": "-1.0",
100
+ "high_repr": "1.0",
101
+ "_np_random": "Generator(PCG64)"
102
+ },
103
+ "n_envs": 1,
104
+ "n_steps": 2048,
105
+ "gamma": 0.98,
106
+ "gae_lambda": 0.92,
107
+ "ent_coef": 0.00013057334805552262,
108
+ "vf_coef": 0.6167177795726859,
109
+ "max_grad_norm": 0.6,
110
+ "batch_size": 8,
111
+ "n_epochs": 5,
112
+ "clip_range": {
113
+ ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
115
+ },
116
+ "clip_range_vf": null,
117
+ "normalize_advantage": true,
118
+ "target_kl": null,
119
+ "lr_schedule": {
120
+ ":type:": "<class 'function'>",
121
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPwPhJN9QJE+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
122
+ }
123
+ }
ppo-seals-Walker2d-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbb0c0cbb484b973a76002c1ee91d21573ca023d69a47bc35d3f59c4d133eb44
3
+ size 1154864
ppo-seals-Walker2d-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:191e2b336f9cbc5a6fde9456b2f8a20c1ccbdff8e490f73a923458fd1f624295
3
+ size 578613
ppo-seals-Walker2d-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-seals-Walker2d-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.2.0a3
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3aa9e59b54559bd3498f95f167f3b4a94747f77e071768a20db664f9cd6d77
3
+ size 1202636
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2465.5641595, "std_reward": 272.3096340126047, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T11:48:14.397100"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcab44588463ec4a95e23978ed2629d13da0fb41e81d6505b6dd5c7b963b2743
3
+ size 30363
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ed5ce67b6e996e4e1f1114f207f3f7e444c4b9b8fbab4cc1394f98263143892
3
+ size 1978