ernestum commited on
Commit
1d70547
1 Parent(s): f9d0d92

Initial commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -101.70 +/- 6.18
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
@@ -37,15 +37,21 @@ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
- python -m utils.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo ppo --env seals/MountainCar-v0 -f logs/
42
  ```
43
 
 
 
 
 
 
 
44
  ## Training (with the RL Zoo)
45
  ```
46
  python train.py --algo ppo --env seals/MountainCar-v0 -f logs/
47
  # Upload the model and generate video (when possible)
48
- python -m utils.push_to_hub --algo ppo --env seals/MountainCar-v0 -f logs/ -orga HumanCompatibleAI
49
  ```
50
 
51
  ## Hyperparameters
@@ -61,11 +67,17 @@ OrderedDict([('batch_size', 512),
61
  ('n_epochs', 20),
62
  ('n_steps', 256),
63
  ('n_timesteps', 1000000.0),
64
- ('normalize', True),
 
65
  ('policy', 'MlpPolicy'),
66
  ('policy_kwargs',
67
- 'dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, '
68
- '64])])'),
 
69
  ('vf_coef', 0.25988158989488963),
70
- ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
 
 
 
 
71
  ```
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: -123.10 +/- 25.47
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
37
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga HumanCompatibleAI -f logs/
41
  python enjoy.py --algo ppo --env seals/MountainCar-v0 -f logs/
42
  ```
43
 
44
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
45
+ ```
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga HumanCompatibleAI -f logs/
47
+ rl_zoo3 enjoy --algo ppo --env seals/MountainCar-v0 -f logs/
48
+ ```
49
+
50
  ## Training (with the RL Zoo)
51
  ```
52
  python train.py --algo ppo --env seals/MountainCar-v0 -f logs/
53
  # Upload the model and generate video (when possible)
54
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/MountainCar-v0 -f logs/ -orga HumanCompatibleAI
55
  ```
56
 
57
  ## Hyperparameters
 
67
  ('n_epochs', 20),
68
  ('n_steps', 256),
69
  ('n_timesteps', 1000000.0),
70
+ ('normalize',
71
+ {'gamma': 0.99, 'norm_obs': False, 'norm_reward': True}),
72
  ('policy', 'MlpPolicy'),
73
  ('policy_kwargs',
74
+ {'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
75
+ 'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
76
+ 'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
77
  ('vf_coef', 0.25988158989488963),
78
+ ('normalize_kwargs',
79
+ {'norm_obs': {'gamma': 0.99,
80
+ 'norm_obs': False,
81
+ 'norm_reward': True},
82
+ 'norm_reward': False})])
83
  ```
args.yml CHANGED
@@ -1,6 +1,8 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
 
 
4
  - - device
5
  - cpu
6
  - - env
@@ -16,7 +18,7 @@
16
  - - hyperparams
17
  - null
18
  - - log_folder
19
- - seals_experts_wandb_oldpickle/seed_4/
20
  - - log_interval
21
  - -1
22
  - - max_total_trials
@@ -41,6 +43,8 @@
41
  - null
42
  - - optimize_hyperparameters
43
  - false
 
 
44
  - - pruner
45
  - median
46
  - - sampler
@@ -50,13 +54,13 @@
50
  - - save_replay_buffer
51
  - false
52
  - - seed
53
- - 4
54
  - - storage
55
  - null
56
  - - study_name
57
  - null
58
  - - tensorboard_log
59
- - runs/seals/MountainCar-v0__ppo__4__1658839798
60
  - - track
61
  - true
62
  - - trained_agent
@@ -70,6 +74,8 @@
70
  - - verbose
71
  - 1
72
  - - wandb_entity
73
- - null
74
  - - wandb_project_name
75
- - seals-experts-oldpickle
 
 
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
  - - device
7
  - cpu
8
  - - env
 
18
  - - hyperparams
19
  - null
20
  - - log_folder
21
+ - logs
22
  - - log_interval
23
  - -1
24
  - - max_total_trials
 
43
  - null
44
  - - optimize_hyperparameters
45
  - false
46
+ - - progress
47
+ - false
48
  - - pruner
49
  - median
50
  - - sampler
 
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
+ - 1
58
  - - storage
59
  - null
60
  - - study_name
61
  - null
62
  - - tensorboard_log
63
+ - runs/seals/MountainCar-v0__ppo__1__1672653886
64
  - - track
65
  - true
66
  - - trained_agent
 
74
  - - verbose
75
  - 1
76
  - - wandb_entity
77
+ - ernestum
78
  - - wandb_project_name
79
+ - seals-experts-normalized
80
+ - - yaml_file
81
+ - null
config.yml CHANGED
@@ -22,10 +22,20 @@
22
  - - n_timesteps
23
  - 1000000.0
24
  - - normalize
25
- - true
 
 
26
  - - policy
27
  - MlpPolicy
28
  - - policy_kwargs
29
- - dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
 
 
 
 
 
 
 
 
30
  - - vf_coef
31
  - 0.25988158989488963
 
22
  - - n_timesteps
23
  - 1000000.0
24
  - - normalize
25
+ - gamma: 0.99
26
+ norm_obs: false
27
+ norm_reward: true
28
  - - policy
29
  - MlpPolicy
30
  - - policy_kwargs
31
+ - activation_fn: !!python/name:torch.nn.modules.activation.Tanh ''
32
+ features_extractor_class: !!python/name:imitation.policies.base.NormalizeFeaturesExtractor ''
33
+ net_arch:
34
+ - pi:
35
+ - 64
36
+ - 64
37
+ vf:
38
+ - 64
39
+ - 64
40
  - - vf_coef
41
  - 0.25988158989488963
ppo-seals-MountainCar-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c2d6711fcdf336f4e99e0acd858a6ec8adf02c29994971894698deccfdd8096c
3
- size 139512
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c8715d54c5150bcde97ff97bc982740c295aa3d64e4b06b9682e3a56ebba8db
3
+ size 140740
ppo-seals-MountainCar-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.0
 
1
+ 1.6.2
ppo-seals-MountainCar-v0/data CHANGED
@@ -4,24 +4,24 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0556518b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb055651940>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0556519d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb055651a60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fb055651af0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fb055651b80>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb055651c10>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fb055651ca0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb055651d30>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb055651dc0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb055651e50>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fb055646e70>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
- ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWF1Lg==",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
  {
@@ -34,7 +34,8 @@
34
  64
35
  ]
36
  }
37
- ]
 
38
  },
39
  "observation_space": {
40
  ":type:": "<class 'gym.spaces.box.Box'>",
@@ -51,27 +52,27 @@
51
  },
52
  "action_space": {
53
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
54
- ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
55
  "n": 3,
56
  "_shape": [],
57
  "dtype": "int64",
58
  "_np_random": "RandomState(MT19937)"
59
  },
60
- "n_envs": 16,
61
  "num_timesteps": 1003520,
62
  "_total_timesteps": 1000000,
63
  "_num_timesteps_at_start": 0,
64
- "seed": 0,
65
  "action_noise": null,
66
- "start_time": 1658839800.798211,
67
  "learning_rate": {
68
  ":type:": "<class 'function'>",
69
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
70
  },
71
- "tensorboard_log": "runs/seals/MountainCar-v0__ppo__4__1658839798/seals-MountainCar-v0",
72
  "lr_schedule": {
73
  ":type:": "<class 'function'>",
74
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
75
  },
76
  "_last_obs": null,
77
  "_last_episode_starts": {
@@ -80,7 +81,7 @@
80
  },
81
  "_last_original_obs": {
82
  ":type:": "<class 'numpy.ndarray'>",
83
- ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAB7z5b4AAAAAyykTvwAAAADv6Ae/AAAAACWCC78AAAAAWPLvvgAAAACS0gK/AAAAAGl+9r4AAAAAYqkAvwAAAAALSQS/AAAAANWE7b4AAAAAo+gTvwAAAABIX9++AAAAAE8Pzr4AAAAATGXqvgAAAADavQ+/AAAAAGkJ8r4AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
84
  },
85
  "_episode_num": 0,
86
  "use_sde": false,
@@ -88,7 +89,7 @@
88
  "_current_progress_remaining": -0.0035199999999999676,
89
  "ep_info_buffer": {
90
  ":type:": "<class 'collections.deque'>",
91
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFqAAAAAAACMAWyUS8iMAXSUR0B2lVNVR1oydX2UKGgGR8BYQAAAAAAAaAdLyGgIR0B2lVAE+xGEdX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B2lUyzollcdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2lUmCyyD7dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2qeB9Tgl4dX2UKGgGR8BYQAAAAAAAaAdLyGgIR0B2qds7+1jRdX2UKGgGR8BXAAAAAAAAaAdLyGgIR0B2qdYYBNmEdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2qdEy+HrRdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B2qcwrUb1idX2UKGgGR8BZQAAAAAAAaAdLyGgIR0B2qceJYT0ydX2UKGgGR8BZQAAAAAAAaAdLyGgIR0B2qcRAbADadX2UKGgGR8BagAAAAAAAaAdLyGgIR0B2qcDnvDxcdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2qbxDst03dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2qbcgyM1kdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2qbHYHxBmdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2qa4hEBsAdX2UKGgGR8BXQAAAAAAAaAdLyGgIR0B2qarHU+cIdX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B2qad1+y7gdX2UKGgGR8BZQAAAAAAAaAdLyGgIR0B2qaQkona4dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2qaDyvs7ddX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2vg2vStvGdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2vghyKekIdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2vgNQTEiudX2UKGgGR8BawAAAAAAAaAdLyGgIR0B2vf5zo2XLdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2vflyR0U5dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2vfTNMXabdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2vfGGVRk3dX2UKGgGR8BZQAAAAAAAaAdLyGgIR0B2ve4x1xKhdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2vemP5pJxdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2veRp1zQvdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2vd8fFJg9dX2UKGgGR8BVwAAAAAAAaAdLyGgIR0B2vdthuwX7dX2UKGgGR8BWgAAAAAAAaAdLyGgIR0B2vdgCwKSgdX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B2vdSqEOAidX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2vdFQVKwqdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2vc4T9KmLdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B20iUMXrMUdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B20h/Ue+23dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B20hqmCROldX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B20hXCCSRsdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B20hDArQPadX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B20gwrUb1idX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B20gjmjj7zdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0B20gWTHKfWdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B20gDr7fpEdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B20fvE0iyIdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B20fZ8KG+LdX2UKGgGR8BXwAAAAAAAaAdLyGgIR0B20fLB9Cu2dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B20e9pRGc4dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B20ewRoRI0dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B20ei8FpwkdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B20eWC2+fzdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B21+nBLwnZdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B21+R5kbxWdX2UKGgGR8BWwAAAAAAAaAdLyGgIR0B2199NN8E3dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B219ph4MWodX2UKGgGR8BXAAAAAAAAaAdLyGgIR0B219VYISlFdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B219C5VfeDdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B21812q1gIdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B218oYvWYndX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B218VvddmhdX2UKGgGR8BWQAAAAAAAaAdLyGgIR0B218BEKE39dX2UKGgGR8BXQAAAAAAAaAdLyGgIR0B217ryDqW1dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B217cvduYQdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B217PMSsbOdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B217ByjpLVdX2UKGgGR8BUwAAAAAAAaAdLyGgIR0B2160VrRBvdX2UKGgGR8BWgAAAAAAAaAdLyGgIR0B216nYQJ5WdX2UKGgGR8BWgAAAAAAAaAdLyGgIR0B263KnvUjLdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2621y/9HddX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B262hWYF7ldX2UKGgGR8BWgAAAAAAAaAdLyGgIR0B262OAAhjfdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B2616By0a7dX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B261ng5zYFdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B261afSQYDdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B261NWU8msdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B26065oXbedX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B260mlZX+3dX2UKGgGR8BagAAAAAAAaAdLyGgIR0B260RkEs8QdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B260CxNZeSdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B26z1e0G/vdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0B26zoUzsQedX2UKGgGR8BZQAAAAAAAaAdLyGgIR0B26zbBXS0CdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0B26zOMVDa5dX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B3DWY0EX+EdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B3DWDyvs7ddX2UKGgGR8BagAAAAAAAaAdLyGgIR0B3DVvES/TLdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B3DVbpu/DcdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B3DVHkLhJidX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B3DU065oXbdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B3DUny/bj+dX2UKGgGR8BagAAAAAAAaAdLyGgIR0B3DUaaTfSAdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0B3DUH1OCXhdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B3DTzOHFgldX2UKGgGR8BagAAAAAAAaAdLyGgIR0B3DTeCTUy6dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B3DTPD50r9dX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B3DTBnBciXdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B3DS0gKWszdX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B3DSnP3SKFdX2UKGgGR8BWQAAAAAAAaAdLyGgIR0B3DSakRBeHdWUu"
92
  },
93
  "ep_success_buffer": {
94
  ":type:": "<class 'collections.deque'>",
@@ -105,7 +106,7 @@
105
  "n_epochs": 20,
106
  "clip_range": {
107
  ":type:": "<class 'function'>",
108
- ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
109
  },
110
  "clip_range_vf": null,
111
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7faed9aed790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faed9aed820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faed9aed8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faed9aed940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7faed9aed9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7faed9aeda60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faed9aedaf0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7faed9aedb80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faed9aedc10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faed9aedca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faed9aedd30>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7faed9ae4c30>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVvAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWGMGGZlYXR1cmVzX2V4dHJhY3Rvcl9jbGFzc5SMF2ltaXRhdGlvbi5wb2xpY2llcy5iYXNllIwaTm9ybWFsaXplRmVhdHVyZXNFeHRyYWN0b3KUk5R1Lg==",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
  {
 
34
  64
35
  ]
36
  }
37
+ ],
38
+ "features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
39
  },
40
  "observation_space": {
41
  ":type:": "<class 'gym.spaces.box.Box'>",
 
52
  },
53
  "action_space": {
54
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
55
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgF02LKRNUMWp5UY0rFo3to63pirwt8VMfWemiJPbZOf2721rNZtrrClEJNeSBQYPlxnW3+Qdgeh1oXhy1T85Qr7p2RIQGALkTcfSX6qD84NVzucjcSoAohkcTBno1Wa3fdKyobsBPWsJ9NIVhKEpgsZSfw3pKStZI9KWXyfp23CSTRNyrN0C5R66BSVvNp1nLuN//VNa+IjKN+AJLbUEddlZNBLzht+JMkIZmhE1aqKijStu93g4WLXKIz0qc8DN0lGyc5OetvPrbJcxbW4HEi/UJ3dsOwkaILG4M2WIYYfocWE14bBroZihB45nuoElDbfnEnY0tanUGIGdY8G9XIcoYnOkkGK1b1V4UHf0VIJpI0imxZH7NW8uUSu9vIxM83WzbYFdD4JW5Mkz4xDFsgQLyxzT5V+wBXGmo2H+gxJ9MBDuDBJM1mpzSHcn6gxd/aZu6EVFWkQ6p+A9dfTtLNpJmbJhyYuOduaFDsy/5bCwBXa3PAAVZb2ws90X3WJd87PiPhQ9/z1pd5I5N3M47q5+Vxbrq5L9BYdQFZ0EaVhQ6NaNvbjfNCHg4wChKSzKTdnw+e4SnpHPqgztYlvqjiSPKWT+uXUpOOuLNJmhlT0Vt7DT763gYCPJ5gQsAfTUGJ8n39zDnNWDx6GlhP1Fvsneb+L+p2+wxDrkPiUbuL8bDiwsxoToYtebC4gTWiVjM/2DcHjEC5Kx/46hMbVmcwc9rqLgFI+nH98q9KmPI8TqLn3wzXt8KFiceRCwiKdCHrT8SzNv5YPp45lV7xyhHdWO3XsPULNRDzbV7LLQxXZZu/SObgGCqs7oWVGx4WNR1eKyYnW8pV97abHWqEPDvZ9jgzBOWYtjs3KsQzEuSwZ4t9Lgz8OdgHV5ntTAZYADt1MEitu49fO8Pss1Td6nLLWSpt9LD4ULM+aymHh/PUDUN5KDfWYL4xf8m8kT23+DycDmPiFmk3qMF4qVXbxLWnacvTVAor6vqkquSYhJTfyZpIdFm4VurcsnPy3rfWQ+/SObSS0ztn41qF7Ciep8g2LhulU5AFd9G09t5McvzCL1xz5vgyWcFy0l0YFVdcaAVNGXN1RQOGwJ8ACNPLHzCUpvzMBtsYq2xlaAhzNhfS5v9RzuTyO8jJQneCutVg6HZy4VNNjE6FK0aCstiesqBi3VztMguE6hofNny5f2KEHJViPcBL7Bru19AbI8/E/mk4gS4Hk9L1BpzcZxt1405r8L8FXoA9/XZtI2yHpWpiFI2MKdp5x4G8fvlOcC0sfDeyVyDhZs9ex2s4rFkMSOkcTRcgq7wc3mNDdT/cWfd6Ht83R0iVbSaKsG9jweJ68ZxVgkhPPEprj+p6jGQbeDHtniIZXUgUL7W7FZINrTh/mX+JkXSWcMX6deCDySLrKjf0oLcRd3y1SlG7YeazxK0ruIr4cfJX/t1/2AKDJhCI+N+OsPbkgOuWeb+vHjCgABUi0+vu6rH7uTSe9uCBScX2O1+tQQYTTjkVe95c/rKolJbtXpuVbDM7wGKIKkZGltTVHkAuiRMrikPHLYGo6xEN240BNr/Y2HXhIqzj6PxN+2jLjL4cnk+fH4NJ07c3Ua1pOlNszITMD5KF0xhHxxO04WlR7iIgxOpLZNTJQ4WT4TQGCRJalcxkk6tYZ6KZUUYwq/PJVAw80x0qvW7+UVgxMFmBlHdZJhsfSWpSlwYl0v0YxU6Y1dcUBLIrRqFGYY2NJ4YyFkMYi2V/goU7cTXlZvviTcViIcSxq8cZTL3qFtFwBeBRYjHr7Bh13YdiCORSlsSgcbFk3p7ZzHEVjIM9ZNuXVbMqWXv4bk7qV9SzU+79EEtD+b6Pykmgaw7qEsOVLyXbHcI2HAbv+YNKkd7bhJHFu/NpOEC+9IER5LRWmB468QAgy5NPm+Wg8GWdLV57JB7Ek94+rFmSSmT55KdErI1ZaYlqr4et442uo5wRaGJtm0lM5/Xgfhoj/OQYrjbcAH1fbYmGUbyduMSFZUuKa4s3I8oUjfPPgVhbbebci7aG6ziOI8UW+8BC4ie4L/yrsn4Ztt0xdxXli0o0SJQhS/rcQ9lqTc3Vxnhf9ZF70VDq0d8Tu/hu/rXc5YcgPIS2COFIgD+7DlVyjkMPvkkxc/uJgD/S8FOCvydDloTtlEUi965owPed7HByJk0TfK0gLpSoKMVarPckfT+/Ex45mf4SEmfCEBcgp3ORGhKeOUceUYi/BZLyVN/zf+8VG1VVNGhm0HcZk3U3OMH6sxkMYkdPvjoBzkKTNPOf2GbKzU7afqZT8myddOY1vudUfsCxurWUHxfDXTaK2M9LhvJnFKXZXLln1UTKe2CsEz+nUZsNYNwNd4g6EI2onmdDT7mek1/v609g2i5hquP32GRSuXuWWGuRwHjOPZX7lK6uFpSYZyz0fthYXTWQ4ganuJwKdBSEv45/ZUaEarYi2pcxshWmi9bq8qhRWaiKfLxJ+7jzAlezVNa238qZaRSDwci3OU1VZw9QG3lzScjAejzkaAZakkhZSVc+zS8QeqWn0pJoPk6wStP0jhomM2fKExDXSodl5HePqHl+dJSgtReqnstbmoHsey+zAL4C/hIIwbIPHegLQjozP+OlrNfwsWwQSo5bWwcRh+LfhjuqrAoEV1w2X5gtts/wkOXbsZdhxl1sX1e5LPc8gW6oIaG7AfcA/GQpVxauq3B8bbXBuzDw0KRYmOTAnsBX9TDslSi8TBlpRLlywvvNLQ2x5Ua5j6lJLJJbQjLvM+NeKOptonRfq3pYYjB6Sxxai+M6iAWdBf+haYoDJFWR335aF6tlFCwymg1wO5LdPJZrHz+EEtVQ/SE5Z1aW9zj7yAM74th+TZORUC3jzkzHuealHOdSpTeOhEXf21W9ck49PCZv0P4R5H/rgHLV/8PxJy1zuRSvpckpTEmZHdQs/2NA70Gefa1zShGw/ukdy6cgyEDntg9bwIWkrBCQZf37jhsymDi9TZq07l8YHnlYUrbN2+nX2bS4SwJpkH90+P81dFJuoXksmSDGrfpnI7Gk5xoB5YVprAysQqqQ8sMM65dK5JdG9xwQfIpP4QOYzx2VnWEwDCCPjmPakalBdDtdDjjtOamsaOqZ65UHxboGR7ixhUOjmQ87ZzkbiGfF93rm35/r4Lsy2ddPrfcsLDK8wbyOUY6iPOtGCXDg51rT3MR+Znc5CcOxzDPSbIR3zN4t9il36Sq1ipw96sM+STtj/nMsOtQpah9mp8OB+7xSouQ1TRZ+qQAkcuxfKKZhmZJsVJQLqKC9hhEsfYFEj0xhXQrU1KAoDKQfwXEhaPXcAS7tptlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
56
  "n": 3,
57
  "_shape": [],
58
  "dtype": "int64",
59
  "_np_random": "RandomState(MT19937)"
60
  },
61
+ "n_envs": 1,
62
  "num_timesteps": 1003520,
63
  "_total_timesteps": 1000000,
64
  "_num_timesteps_at_start": 0,
65
+ "seed": 4,
66
  "action_noise": null,
67
+ "start_time": 1672653888502052346,
68
  "learning_rate": {
69
  ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
71
  },
72
+ "tensorboard_log": "runs/seals/MountainCar-v0__ppo__1__1672653886/seals-MountainCar-v0",
73
  "lr_schedule": {
74
  ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
76
  },
77
  "_last_obs": null,
78
  "_last_episode_starts": {
 
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAPKF4L4AAAAArHrcvgAAAADko+i+AAAAAB7z5b4AAAAAyykTvwAAAADv6Ae/AAAAACWCC78AAAAAWPLvvgAAAACS0gK/AAAAAGl+9r4AAAAAYqkAvwAAAAALSQS/AAAAANWE7b4AAAAAo+gTvwAAAABIX9++AAAAAE8Pzr4AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
85
  },
86
  "_episode_num": 0,
87
  "use_sde": false,
 
89
  "_current_progress_remaining": -0.0035199999999999676,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFmAAAAAAACMAWyUS8iMAXSUR0Bz3njPv8ZUdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0Bz3nUG3WnTdX2UKGgGR8BYAAAAAAAAaAdLyGgIR0Bz3nDP4VRDdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bz3mq5sj3VdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0Bz78+9rXUZdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bz78mplz2fdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bz78WP91lodX2UKGgGR8BZwAAAAAAAaAdLyGgIR0Bz78GcFyJbdX2UKGgGR8BYAAAAAAAAaAdLyGgIR0Bz771wo9cKdX2UKGgGR8BYQAAAAAAAaAdLyGgIR0Bz77mdRR/FdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0Bz77WOIZZTdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0Bz77GrCFbndX2UKGgGR8BZQAAAAAAAaAdLyGgIR0Bz763F1jiGdX2UKGgGR8BZQAAAAAAAaAdLyGgIR0Bz76n1nM+vdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0Bz76YeDFqBdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bz76HnEETydX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bz752IO6NEdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0Bz75m4AjptdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bz75WGRFI/dX2UKGgGR8BYwAAAAAAAaAdLyGgIR0Bz749wFTvRdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0B0AKSV4X41dX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B0AJ6NVBD5dX2UKGgGR8BZQAAAAAAAaAdLyGgIR0B0AJpztCzDdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0AJaA4GUwdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0AJJXhfjTdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0AI6EJ0GNdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0AIpz90ihdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0AIaQ3gk1dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0AIKrq+rVdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B0AH7di2DydX2UKGgGR8BZQAAAAAAAaAdLyGgIR0B0AHsKLKmsdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B0AHbTMJQddX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0AHJ2dNFjdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0AG6g/TsqdX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B0AGpm29csdX2UKGgGR8BYwAAAAAAAaAdLyGgIR0B0AGROk+HKdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0EvIyTINmdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0EuxY7q6fdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0EuhysCDFdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0EuSwGGEgdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0EuCtihFmdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0Et0U47zTdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0Etkwvg3tdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B0EtWKdhAodX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0EtG/etSydX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0Es4MnZ00dX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B0EspazNUwdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0EsZFXq7idX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0EsIHC4z8dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0Er5P/JeWdX2UKGgGR8BXQAAAAAAAaAdLyGgIR0B0Ero4dZJTdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0ErRCx/utdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0F8hTwUg0dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B0F8JMQEpzdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0B0F74593KTdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B0F7pIMBp6dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B0F7YcvM8pdX2UKGgGR8BWgAAAAAAAaAdLyGgIR0B0F7JW/8EWdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0F65Gz8gqdX2UKGgGR8BXQAAAAAAAaAdLyGgIR0B0F6pzcRDkdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0F6aPS2H+dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0F6K/EfkndX2UKGgGR8Bi4AAAAAAAaAdLyGgIR0B0F57qptJndX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B0F5qzqrzYdX2UKGgGR8BWQAAAAAAAaAdLyGgIR0B0F5ZV4oqkdX2UKGgGR8BWwAAAAAAAaAdLyGgIR0B0F5J/XoTxdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0F45EMLF5dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0F4guAZsLdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0KHonrpqzdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0KHQQcxTLdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0KG/20zCUdX2UKGgGR8BXQAAAAAAAaAdLyGgIR0B0KGwQlKK6dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0KGfra/RFdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0KGQaJhvzdX2UKGgGR8BWgAAAAAAAaAdLyGgIR0B0KGAOJ+DwdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0KFwtJ4B4dX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B0KFhJAdGRdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0KFR+BpYcdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0KFCqp97XdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0KEx1xKg7dX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B0KEgaFVT8dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0KERGtp22dX2UKGgGR8BagAAAAAAAaAdLyGgIR0B0KEANoakzdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0KDn/1g6VdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0Q1/rjYI0dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0Q1nZkCmudX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0Q1W+49X+dX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B0Q1HOKO1fdX2UKGgGR8BcQAAAAAAAaAdLyGgIR0B0Q02l2vB8dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0Q0nSfDk3dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0Q0XCTEBKdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0Q0HfMwDedX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0Qz349HMEdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0B0Qzopx3mndX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0QzZTQ3PzdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0B0QzIcR15jdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B0Qy2+fywwdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B0Qynn+yZ8dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B0QyWszVMFdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B0Qx+XqqwRdWUu"
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
 
106
  "n_epochs": 20,
107
  "clip_range": {
108
  ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
110
  },
111
  "clip_range_vf": null,
112
  "normalize_advantage": true,
ppo-seals-MountainCar-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:90156d9bca35512749633228d33cf2026e4e7b75e7ed0b73b474d107249da25c
3
  size 80889
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d37d94b78301e5971ad05c3a5a012d6519a32e0fb8250eb425a9d01e06145e45
3
  size 80889
ppo-seals-MountainCar-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fe77da1a5391bea6f0eb612b8ae3114c6a2e37391c7c000a96b6c4d81eaa8eee
3
- size 39745
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec8b2e9cc43bb7d40aae3cb3c2038dd7706e4167c592da2dead776535b2ad991
3
+ size 40760
ppo-seals-MountainCar-v0/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
- OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
2
  Python: 3.8.10
3
- Stable-Baselines3: 1.6.0
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
 
1
+ OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.29 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
2
  Python: 3.8.10
3
+ Stable-Baselines3: 1.6.2
4
  PyTorch: 1.11.0+cu102
5
  GPU Enabled: False
6
  Numpy: 1.22.3
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d77cb16b441d277b0ec5dd77e689043cde287194c94f7521b71d3a5d4bdce88
3
- size 158178
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7097a70af23f56753ff4df18b7f212fdf859e8752a93846482e5612ca1c5146f
3
+ size 176520
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -101.7, "std_reward": 6.181423784210236, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-27T17:01:30.913840"}
 
1
+ {"mean_reward": -123.1, "std_reward": 25.469393396781165, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-02T11:15:35.759802"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c190cc6bb181f1e4480104e30f79aca985c8c8ca5011a2acf1090a64649acb9
3
- size 119207
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11a94a0f3d92cc83a61ceb6f582f592dcf8c50a0b55aef0d6d4d6d374381341e
3
+ size 119305
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:09736caaa11fa6d590e207260a1c4cc66b041366413d470ba377b9a2c8d35630
3
- size 4136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17b0e58a05e432df8b67646a4caaf35e57a93ff193b4023911c74e0b141364ef
3
+ size 3961