ernestum commited on
Commit
bc20a15
1 Parent(s): 54b7d1a

Initial commit

Browse files
ppo-seals-HalfCheetah-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:303c8d5f238d28fbffcc28c81206b9dc1e4497aa3a107acd8a6aee00a142c4e9
3
  size 167933
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77c576ac41044d5382692b96adf1f80ae3472aebc68a52e998d86ee1cd88561f
3
  size 167933
ppo-seals-HalfCheetah-v1/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8772e2ee0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8772e2f70>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff877267040>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8772670d0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7ff877267160>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7ff8772671f0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff877267280>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff877267310>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7ff8772673a0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff877267430>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8772674c0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff877267550>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7ff8772cdc90>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f158f9afee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f158f9aff70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f158f934040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f158f9340d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f158f934160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f158f9341f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f158f934280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f158f934310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f158f9343a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f158f934430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f158f9344c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f158f934550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f158f9abde0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1675.7591266, "std_reward": 45.89236738692049, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T11:49:16.575772"}
 
1
+ {"mean_reward": 1675.7591266, "std_reward": 45.89236738692049, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T11:58:11.147177"}