siglip-so400m-14-384-flash-attn2-navit / convert_siglip_to_hf.py
HugoLaurencon's picture
first commit
9da5852
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SigLIP checkpoints from the original repository.
URL: https://github.com/google-research/big_vision/tree/main
"""
import argparse
import collections
from pathlib import Path
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from numpy import load
from PIL import Image
from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
model_name_to_checkpoint = {
# base checkpoints
"siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz",
"siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz",
"siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz",
"siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz",
# large checkpoints
"siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz",
"siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz",
# multilingual checkpoint
"siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz",
# so400m checkpoints
"siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz",
}
model_name_to_image_size = {
"siglip-base-patch16-224": 224,
"siglip-base-patch16-256": 256,
"siglip-base-patch16-384": 384,
"siglip-base-patch16-512": 512,
"siglip-large-patch16-256": 256,
"siglip-large-patch16-384": 384,
"siglip-base-patch16-256-i18n": 256,
"siglip-so400m-patch14-384": 384,
}
def get_siglip_config(model_name):
config = SiglipConfig()
vocab_size = 250000 if "i18n" in model_name else 32000
image_size = model_name_to_image_size[model_name]
patch_size = 16 if "patch16" in model_name else 14
# size of the architecture
config.vision_config.image_size = image_size
config.vision_config.patch_size = patch_size
config.text_config.vocab_size = vocab_size
if "base" in model_name:
pass
elif "large" in model_name:
config.text_config.hidden_size = 1024
config.text_config.intermediate_size = 4096
config.text_config.num_hidden_layers = 24
config.text_config.num_attention_heads = 16
config.vision_config.hidden_size = 1024
config.vision_config.intermediate_size = 4096
config.vision_config.num_hidden_layers = 24
config.vision_config.num_attention_heads = 16
elif "so400m" in model_name:
config.text_config.hidden_size = 1152
config.text_config.intermediate_size = 4304
config.text_config.num_hidden_layers = 27
config.text_config.num_attention_heads = 16
config.vision_config.hidden_size = 1152
config.vision_config.intermediate_size = 4304
config.vision_config.num_hidden_layers = 27
config.vision_config.num_attention_heads = 16
else:
raise ValueError("Model not supported")
return config
def create_rename_keys(config):
rename_keys = []
# fmt: off
# vision encoder
rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight"))
rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias"))
rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight"))
for i in range(config.vision_config.num_hidden_layers):
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight"))
rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias"))
rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe"))
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight"))
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias"))
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight"))
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias"))
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight"))
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias"))
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight"))
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias"))
# text encoder
rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight"))
rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight"))
for i in range(config.text_config.num_hidden_layers):
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight"))
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias"))
rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight"))
rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias"))
rename_keys.append(("params/txt/head/kernel", "text_model.head.weight"))
rename_keys.append(("params/txt/head/bias", "text_model.head.bias"))
# learned temperature and bias
rename_keys.append(("params/t", "logit_scale"))
rename_keys.append(("params/b", "logit_bias"))
# fmt: on
return rename_keys
def rename_key(dct, old, new, config):
val = dct.pop(old)
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new:
val = val.reshape(-1, config.vision_config.hidden_size)
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new:
val = val.reshape(-1, config.text_config.hidden_size)
if "patch_embedding.weight" in new:
val = val.transpose(3, 2, 0, 1)
elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new:
val = val.T
if "position_embedding" in new and "vision" in new:
val = val.reshape(-1, config.vision_config.hidden_size)
if "position_embedding" in new and "text" in new:
val = val.reshape(-1, config.text_config.hidden_size)
if new.endswith("bias"):
val = val.reshape(-1)
dct[new] = torch.from_numpy(val)
def read_in_q_k_v_head(state_dict, config):
# read in individual input projection layers
key_proj_weight = (
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel")
.reshape(-1, config.vision_config.hidden_size)
.T
)
key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1)
value_proj_weight = (
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel")
.reshape(-1, config.vision_config.hidden_size)
.T
)
value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1)
query_proj_weight = (
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel")
.reshape(-1, config.vision_config.hidden_size)
.T
)
query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1)
# next, add them to the state dict as a single matrix + vector
state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy(
np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0)
)
state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy(
np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0)
)
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
def flatten_nested_dict(params, parent_key="", sep="/"):
items = []
for k, v in params.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, collections.abc.MutableMapping):
items.extend(flatten_nested_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
@torch.no_grad()
def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our SigLIP structure.
"""
# define default SigLIP configuration
config = get_siglip_config(model_name)
# get checkpoint
checkpoint = model_name_to_checkpoint[model_name]
# get vocab file
if "i18n" in model_name:
vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model"
else:
vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model"
# load original state dict
data = load(checkpoint)
state_dict = flatten_nested_dict(data)
# remove and rename some keys
rename_keys = create_rename_keys(config)
for src, dest in rename_keys:
rename_key(state_dict, src, dest, config)
# qkv matrices of attention pooling head need special treatment
read_in_q_k_v_head(state_dict, config)
# load HuggingFace model
model = SiglipModel(config).eval()
model.load_state_dict(state_dict)
# create processor
# important: make tokenizer not return attention_mask since original one doesn't require it
image_size = config.vision_config.image_size
size = {"height": image_size, "width": image_size}
image_processor = SiglipImageProcessor(size=size)
tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"])
processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer)
# verify on dummy images and texts
url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg"
image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB")
url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg"
image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB")
texts = ["an apple", "a picture of an apple"]
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length")
# verify input_ids against original ones
if image_size == 224:
filename = "siglip_pixel_values.pt"
elif image_size == 256:
filename = "siglip_pixel_values_256.pt"
elif image_size == 384:
filename = "siglip_pixel_values_384.pt"
elif image_size == 512:
filename = "siglip_pixel_values_512.pt"
else:
raise ValueError("Image size not supported")
filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset")
original_pixel_values = torch.load(filepath)
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset")
original_input_ids = torch.load(filepath)
if "i18n" not in model_name:
assert inputs.input_ids.tolist() == original_input_ids.tolist()
print("Mean of original pixel values:", original_pixel_values.mean())
print("Mean of new pixel values:", inputs.pixel_values.mean())
# note: we're testing with original pixel values here since we don't have exact pixel values
with torch.no_grad():
outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values)
# with torch.no_grad():
# outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values)
print(outputs.logits_per_image[:3, :3])
probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'")
if verify_logits:
if model_name == "siglip-base-patch16-224":
expected_slice = torch.tensor(
[[-2.9621, -2.1672], [-0.2713, 0.2910]],
)
elif model_name == "siglip-base-patch16-256":
expected_slice = torch.tensor(
[[-3.1146, -1.9894], [-0.7312, 0.6387]],
)
elif model_name == "siglip-base-patch16-384":
expected_slice = torch.tensor(
[[-2.8098, -2.1891], [-0.4242, 0.4102]],
)
elif model_name == "siglip-base-patch16-512":
expected_slice = torch.tensor(
[[-2.7899, -2.2668], [-0.4295, -0.0735]],
)
elif model_name == "siglip-large-patch16-256":
expected_slice = torch.tensor(
[[-1.5827, -0.5801], [-0.9153, 0.1363]],
)
elif model_name == "siglip-large-patch16-384":
expected_slice = torch.tensor(
[[-2.1523, -0.2899], [-0.2959, 0.7884]],
)
elif model_name == "siglip-so400m-patch14-384":
expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]])
elif model_name == "siglip-base-patch16-256-i18n":
expected_slice = torch.tensor(
[[-0.9064, 0.1073], [-0.0299, 0.5304]],
)
assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving processor to {pytorch_dump_folder_path}")
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model.push_to_hub(f"nielsr/{model_name}")
processor.push_to_hub(f"nielsr/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="siglip-base-patch16-224",
type=str,
choices=model_name_to_checkpoint.keys(),
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--verify_logits",
action="store_false",
help="Whether to verify logits against the original implementation.",
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub)